a.maths

2007-02-21 6:06 am
solve for 0<=x<360

(1-tanx)(1+sin2x)=1+tanx

回答 (3)

2007-02-21 8:50 pm
✔ 最佳答案
a.maths
solve for 0<=x<3 60

(1-tanx)(1+sin2x)=1+ tanx

解:    ( 1 - tanx ) ( 1 + sin2x ) = 1 + tanx
兩邊 × cosx :
   ≡ ( cosx - sinx ) ( 1 + sin2x ) = cosx + sinx
兩邊 × ( cosx - sinx ) :
   ≡ ( cosx - sinx )2 ( 1 + sin2x ) = cos2x - sin2x
   ≡ ( cos2x - 2 sinx cosx + sin2x ) ( 1 + sin2x ) = ( 1 - sin2x ) - sin2x
   ≡ ( 1 - sin2x) ( 1 + sin2x ) = 1 - 2 sin2x
   ≡ 1 - sin22x = 1 - 2 sin2x
   ≡ 2 sin2x = sin22x
         = 4 sin2x cos2x
          1 = 2 cos2x
       cos2x = 1 / 2
       cosx = ± 1 / (√2 )
        x = 135°,315°# .........( 45°,225°不合 )
      通解  x = ( n - 1 / 4 ) π

2007-02-21 13:08:08 補充:
  由於計算過程中,曾消去 (sinx)^2 項,但如此項等於零,則有 x = 0°,180°之解,因 0°≤ x < 360°。通解為 x = ( n - 1 ) π
2007-02-21 7:28 am
(1-tanx)(1+sin2x)=1+tanx
1 - sinx/cosx + 2sinxcosx - 2sin^2 x = 1+ sinx/cosx
2sinx cosx - 2sin^2 x - 2sinx/cosx = 0
sinx = 0.......................or ........................ 2cosx - 2sinx - 2/cosx = 0
x= 180 or 360...........................................cos^2 x - sinxcosx -1 = 0
...............................................................sinxcosx + 1 - cos^2 x=0
...............................................................sinxcos +sin^2 x = 0
............................................................sinx=0.............or............cosx+sinx=0
...........................................................(repeated)...................sin(90-x)+sinx=0
.........................................................................................2sin45cos(45-x)=0
..................................................................................................cos(x-45)=0
.............................................................................................x-45=90, 270
.................................................................................................x=135, 315
i.e. overall solution is x=135,180,315,360

2007-02-20 23:40:42 補充:
i am overlooking the question,360 is not the required answer,if you want, the general solutin isx=n(pi)............. or.................2n(pi) 3(pi)/4..........or .............2n(pi)-(pi)/4where n is any integers
參考: Keith
2007-02-21 6:41 am
(1-tanx)(1+sin2x)=1+tanx
1-sin2xtanx-tanx+sin2x-1-tanx=0
2sinxcosx-2sinxcosx(sinx/cosx)-sinxcosx=0
2sinxcos^2x-2sin^2x-sinxcos^2x=0
2sinx(1-sin^2x)-2sin^2x-sinx(1-sin^2x)=0
2sinx-2sin^3x-2sin^2x-sinx+sin^3x=0
sin^3x+2sin^2x-sinx=0
sinx(sin^2x+2sinx-1)=0
sinx=0 or sinx=[-2+/-(8)^0.5]/2
x=0,180,360 or x=24.47 , sinx=-2.414(rejected) (corr. to 4 sig. fig.)

2007-02-20 22:42:29 補充:
sorry, x=/=360

2007-02-21 00:43:05 補充:
2sinxcosx-2sinxcosx(sinx/cosx)-sinxcosx=0呢一步做錯左....
參考: Knowledge+


收錄日期: 2021-04-12 18:01:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070220000051KK03954

檢視 Wayback Machine 備份