✔ 最佳答案
a.maths
solve for 0<=x<3 60
(1-tanx)(1+sin2x)=1+ tanx
解: ( 1 - tanx ) ( 1 + sin2x ) = 1 + tanx
兩邊 × cosx :
≡ ( cosx - sinx ) ( 1 + sin2x ) = cosx + sinx
兩邊 × ( cosx - sinx ) :
≡ ( cosx - sinx )2 ( 1 + sin2x ) = cos2x - sin2x
≡ ( cos2x - 2 sinx cosx + sin2x ) ( 1 + sin2x ) = ( 1 - sin2x ) - sin2x
≡ ( 1 - sin2x) ( 1 + sin2x ) = 1 - 2 sin2x
≡ 1 - sin22x = 1 - 2 sin2x
≡ 2 sin2x = sin22x
= 4 sin2x cos2x
1 = 2 cos2x
cos2x = 1 / 2
cosx = ± 1 / (√2 )
x = 135°,315°# .........( 45°,225°不合 )
通解 x = ( n - 1 / 4 ) π
2007-02-21 13:08:08 補充:
由於計算過程中,曾消去 (sinx)^2 項,但如此項等於零,則有 x = 0°,180°之解,因 0°≤ x < 360°。通解為 x = ( n - 1 ) π