F.4 trigo solve sin(3Θ)=cosΘ

2007-02-18 6:04 pm
Find the general solution of sin(3Θ)=cosΘ.

Here are some formula:
sinAcosB = (1/2)[sin(A+B)+sin(A-B)]
cosAsinB = (1/2)[sin(A+B)-sin(A-B)]
cosAcosB = (1/2)[cos(A+B)+cos(A-B)]
sinAsinB = (-1/2)[cos(A+B)-cos(A-B)]
sinA + sinB = 2 sin [(A+B)/2] cos [(A-B)/2]
sinA - sinB = 2 cos [(A+B)/2] sin [(A-B)/2]
cosA + cosB = 2 cos [(A+B)/2] cos [(A-B)/2]
cosA - cosB = -2 sin [(A+B)/2] sin [(A-B)/2]
更新1:

sin(A+B) = sinAcosB + cosAsinB sin(A - B) = sinAcosB - cosAsinB cos(A+B) = cosAcosB - sinAsinB cos(A-B) = cosAcosB + sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA - tanB)/(1+tanAtanB)

更新2:

I think gladysbwlo1116 had given the best answer. His answer is simply as well as clear. For 納粹戰爭主義革命軍元首,I am sorry that I think you are better not to use the general solution for the sine function. You made it become more complex. Thanks for your answers.

更新3:

Brian Lui: 如果係你答先 我一定揀你o個個做best answer. 雖然amaths書ge答案都係in radian,不過我認為冇緊要gei...

回答 (3)

2007-02-18 6:37 pm
✔ 最佳答案
sin3x=cosx
cos(90-3x)=cosx
90-3x=360n+x or 90-3x=360n-x
4x=90-360n or 2x=90-360n
x=22.5-90n or x=45-180n
where n is an integer
2007-02-18 7:21 pm
樓上第一個、第三個答案都錯,第二個是對的。
但是,我比較習慣以 radian 式表達 general solution。
答案如下:

sin(3Θ) = cosΘ
cos(π/2 - 3Θ) = cosΘ
Θ = 2mπ ± (π/2 - 3Θ) , for any integer m
 = (2m + 1/2)π - 3Θ or (2m - 1/2)π + 3Θ
4Θ = (2m + 1/2)π or 2Θ = (-2m + 1/2)π
Θ = (m/2 + 1/8)π or Θ = (-m + 1/4)π
So,
Θ = (n/2 + 1/8)π or Θ = (n + 1/4)π , for any integer n

2007-02-21 00:41:59 補充:
正如我說了,這答案也是正確的,所以選為最佳答案我沒有異議。
雖然這答案也是正確,但在 Add.Maths 我們一般用 radian,少用 degree 表達 general solution,所以建議你考試時還是按 radian 來做吧。
2007-02-18 6:39 pm
sin(3Θ)=cos Θ
sin (3Θ)=sin (90-Θ)
3Θ=180n+(-1)^n (90-Θ) where n is an integer.
3Θ-(-1)^n (90-Θ)=180n
3Θ+90-Θ=360m or 3Θ-90+Θ=360m+180
2Θ=360m-90 or 4Θ=360m+270
Θ=180m-45 or Θ=90m+67.5 where m is an integer


收錄日期: 2021-04-23 00:09:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070218000051KK00644

檢視 Wayback Machine 備份