F.4 AMATHS(trigonometry)

2007-02-16 10:53 pm
(1)let π<α<3π/2. If sinα and secα are the roots of the equation 2X^2 -kx+3=0, find the value of the constant k.

(2)let f(α)= sin^2 α -cosα+1.find the range of value of f(α).

回答 (1)

2007-02-16 11:23 pm
✔ 最佳答案
(1)
sinα and secα are the roots of the equation 2X^2 -kx+3=0
∴sinα + secα = k/2-------------------(1)

sinα secα = 3/2
∴sinα /cosα = 3/2
tanα = 3/2
∴sinα = 3/√13---------------------(2)
cosα = 2/√13
secα = √13 /2-----------------------(3)
sub (2),(3) into (1):
3/√13 + √13 /2= k/2
k = 6/√13 + √13

f(α)
= sin^2 α - cosα + 1
=1-cos^2 α - cosα +1
=-cos^2 α - cosα +2
=-(cosα +1/2)^2 +9/4
∴maximum of f(α) = 9/4

maximum of (cosα +1/2) =3/2
∴ minimum of [-(cosα +1/2)^2] = - 9/4 [-(3/2)^2]
∴minimum of f(α) = 0[因為9/4 - 9/4 = 0]
∴0<f(α)<9/4

2007-02-17 01:13:44 補充:
f(α)=-(cosα +1/2)^2 +9/4要f(α)是最小,9/4是不變的,所以只是需要[-(cosα +1/2)^2]是最小但因為已經有"-",所以需要(cosα +1/2)^2 是最大就行了由於cos一個數最大是1,最小是-1我們需要(cosα +1/2)^2 是最大,所以需要cosα = 1∴最小的f(α)=-(1 +1/2)^2 +9/4 = 0留意:即使f(α)=-(cosα - 1/2)^2 +9/4,最小仍然是0,你知道為什麼嗎?


收錄日期: 2021-04-12 20:31:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070216000051KK02246

檢視 Wayback Machine 備份