數學類型:Trigonometry

2007-02-13 4:44 am
第一題
Solve the equation for 90<θ<270 (數字為角度)
1) √2sinθ+9sin(90-θ)=0
2) 4cos^2θ ﹣9cos(180+θ)+2=0
3) 5cosθ+2sin^2θ+1=0


另一題
If tanθ=2 , find the value of sinθcosθ without finding the measures of θ
拜託好心人教我!
更新1:

- -" 為免有問題…最好比個程

回答 (3)

2007-02-13 5:05 am
✔ 最佳答案
1) √2sinθ + 9sin(90-θ) = 0
√2sinθ = -9cosθ
tanθ = 9/√2
θ = 261.06986(corr to 5dp)

2) 4(cosθ)^2 ﹣9cos(180+θ) + 2 = 0
4(cosθ)^2 + 9cosθ + 2 = 0
(4cosθ + 1)(cosθ + 2) = 0
cosθ = -0.25 or -2(rej)
θ = 104.47751 or 255.52249(corr to 5dp)

3) 5cosθ + 2(sinθ)^2 + 1 = 0
2 - 2(cosθ)^2 + 5cosθ + 1 = 0
2(cosθ)^2 - 5cosθ - 3 = 0
(2cosθ + 1)(cosθ - 3) = 0
cosθ = -0.5 or 3(rej)
θ = 120 or 240

4) tanθ=2
Construct a right-angled triangle, with 2 as opposite side, 1 as adjacent side
Thus, by pyth. theorem, hypotenuse = √5
sinθcosθ = (2/√5)(1/√5) = 2/5
2007-02-18 11:28 pm
1.解:√2sinθ=-9cosθ
tanθ=-9/√2
θ=98.9(度)
2.解:4cos^2θ+9cosθ+2=0
(4cosθ+1)(cosθ+2)=0
解得:cosθ=-1/4或-2(不合,捨去)
所以,θ=104.5(度)
3.解:5cosθ+2(1-cos^2θ)+1=0
2cos^2θ-5cosθ-3=0
(2cosθ+1)(cosθ-3)=0
解得:cosθ=-1/2或3(不合,捨去)
所以,θ=120(度)
另一題,
解:依題,tanθ=2
所以,以tanθ建立直角三角形,兩直角邊分別為1和2,則直角三角形斜邊長為√5
所以sinθ=2/√5,cosθ=1/√5
所以,sinθcosθ=(2/√5)*( 1/√5)=2/5

2007-02-18 15:32:38 補充:
第二題答案還有255.5(度)第三題答案還有240(度)
2007-02-13 4:51 am
第一題要將所有野變做 0 < a<180 計 a=θ-90

即係sub θ=a+90,再計


第二題只要畫返個三角形

咁就計到個大斜邊係 √5

以sin 就係 2/√5

cos 就係 1/√5


收錄日期: 2021-04-23 13:28:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070212000051KK04120

檢視 Wayback Machine 備份