Mathematics Question

2007-02-11 4:31 am
If a, b and c are positive integers such that abc+ab+bc+ac+a+b+c = 2003 , find the least value of abc.

回答 (1)

2007-02-11 4:47 am
✔ 最佳答案
先考慮 (a+1)(b+1)(c+1)

(a+1)(b+1)(c+1)
= (ab + a + b + 1)(c+1)
= abc + ac + bc + ab + a + b + c + 1
= (abc + ac + bc + ab + a + b + c) + 1

現在 abc+ab+bc+ac+a+b+c = 2003

abc+ab+bc+ac+a+b+c = 2003
abc+ab+bc+ac+a+b+c+1 = 2003+1
(a+1)(b+1)(c+1) = 2004

所以要考慮的是 2004 的 3 個因子。

2004 = 2 x 2 x 3 x 167

所以可能的 a,b,c 是:

a=3, b=2, c=166
a=1, b=5, c=166
a=1, b=2, c=333
a=1, b=1, c=500
the least value of abc is 500


收錄日期: 2021-04-25 16:52:12
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070210000051KK04207

檢視 Wayback Machine 備份