what is the infinite number?

2007-02-11 1:50 am
what is the infinite number?
更新1:

Please give me the actual value!

回答 (2)

2007-02-21 12:28 am
✔ 最佳答案
In mathematics, "infinity" is often used in contexts where it is treated as if it were a number (i.e., it counts or measures things : "an infinite number of terms") but it is clearly a very different type of "number" than the integers or reals. Infinity is relevant to, or the subject matter of, limits, aleph numbers, classes in set theory, Dedekind-infinite sets, large cardinals, Russell's paradox, hyperreal numbers, projective geometry, extended real numbers and the absolute Infinite.



Mathematical infinity



Infinity is the state of being greater than any finite (real or natural) number, however large.







Infinity in real analysis

In real analysis,e symbol
圖片參考:http://upload.wikimedia.org/math/b/e/a/beab416080922c84a90ba092f7734fe5.png
as the same, leading to the one-point compactification of the real numbers, which is the real projective line. Projective geometry also introduces a line at infinity in plane geometry, and so forth for higher dimensions.



Infinity is often used not only to define a limit but as if it were a value in the extended real numbers in real analysis; if f(t) ≥ 0 then






圖片參考:http://upload.wikimedia.org/math/5/d/6/5d6857c325329406e2175ea72d9de798.png
means that f(t) does not bound a finite area from 0 to 1


圖片參考:http://upload.wikimedia.org/math/3/3/4/3348e0b6a3619f11651f0a52fc71fe56.png
means that the area under f(t) is infinite.


圖片參考:http://upload.wikimedia.org/math/c/6/9/c699f1b6ba32ccecebbc04c5881adc6f.png
means that the area under f(t) equals 1

Infinity is also used to describe infinite series:






圖片參考:http://upload.wikimedia.org/math/b/7/4/b7431d1a81f89e0477f906301d8de2ea.png
means that the sum of the infinite series converges to some real value x.


圖片參考:http://upload.wikimedia.org/math/5/2/a/52ade42ca42382e55b01cea4ac8ef207.png
means that the sum of the infinite series diverges, i.e., its value is undefined.





Infinity in complex analysis

As in real analysis, in complex analysis the symbol
圖片參考:http://upload.wikimedia.org/math/d/2/4/d245777abca64ece2d5d7ca0d19fddb6.png
at the poles. The domain of a complex-valued function may be extended to include the point at infinity as well. One important example of such functions is the group of Möbius transformations.







Infinities as part of the extended real number line

Infinity is not a real number but the extended real number line adds two elements called infinity (
圖片參考:http://upload.wikimedia.org/math/b/e/a/beab416080922c84a90ba092f7734fe5.png
), less than all other extended real numbers, in which arithmetic operations involving these new elements may be performed. In this system, infinity, and minus infinity have the following arithmetic properties:







Infinity with itself




圖片參考:http://upload.wikimedia.org/math/6/c/7/6c79b0d371a3fd0222247445b94268ae.png





圖片參考:http://upload.wikimedia.org/math/d/0/2/d02566a3cb962e032bce2fd0a34ebffe.png





圖片參考:http://upload.wikimedia.org/math/e/3/9/e39215ca4ad678c29ac67ce8050886ac.png





圖片參考:http://upload.wikimedia.org/math/3/d/c/3dc2f4a10c7dc99ab00af66aa2c99d48.png





圖片參考:http://upload.wikimedia.org/math/8/c/4/8c484af4acbcf4ba4f2dd896279299a7.png






Operations involving infinity and a real number x




圖片參考:http://upload.wikimedia.org/math/a/4/b/a4b885c1f32f3fda45e8209fa8e6a311.png





圖片參考:http://upload.wikimedia.org/math/9/4/0/94026631d5e01e928ba7b9e939ec9e41.png





圖片參考:http://upload.wikimedia.org/math/4/1/b/41b9d16e3faf44304b2f502ecc7b38e1.png





圖片參考:http://upload.wikimedia.org/math/7/8/f/78f15f7290a30f9d30972f90193209e2.png





圖片參考:http://upload.wikimedia.org/math/c/9/e/c9efcd66f5c7b6711af7aeb445d9a25a.png




If 0 \," src="http://upload.wikimedia.org/math/7/f/4/7f487cbdbc8528bd14a1f971ef68def6.png"> then








圖片參考:http://upload.wikimedia.org/math/b/b/7/bb7ce951ff97847b87ec96d209ad3fd2.png









圖片參考:http://upload.wikimedia.org/math/f/4/8/f4893b6281d2656536927b0ac25b81c6.png




If
圖片參考:http://upload.wikimedia.org/math/3/1/c/31c57abf025efa1a4313bf7b112e6c3e.png
then








圖片參考:http://upload.wikimedia.org/math/6/2/6/62611efb61a276feba5843f865a93f02.png









圖片參考:http://upload.wikimedia.org/math/4/7/3/4733962e4ff761c61be50505e8eb87ae.png






Indeterminate operations




圖片參考:http://upload.wikimedia.org/math/0/0/1/001647de62f021278adb72cfa3169ae5.png





圖片參考:http://upload.wikimedia.org/math/5/c/e/5ced5c0e63a511d1b85903744db7e18e.png





圖片參考:http://upload.wikimedia.org/math/8/5/0/8509a343d494b0a70981bb48957ccc45.png





圖片參考:http://upload.wikimedia.org/math/6/5/9/659537e38bf3254a8c794348f63d2135.png





圖片參考:http://upload.wikimedia.org/math/7/a/4/7a42b425e2f5a6f2e5571ad83e5857a8.png





圖片參考:http://upload.wikimedia.org/math/3/c/4/3c4901e48e62a3ea056d2881be71cca2.png





圖片參考:http://upload.wikimedia.org/math/9/0/2/90250a1b032f8817709c1851611cbc8b.png


Notice that
圖片參考:http://upload.wikimedia.org/math/5/1/1/511f54ce6c265d26a1f00b20680d0057.png
.



Also, by L'Hôpital's rule, limits of indeterminate solutions to an equation can be found if the equation can be put in the form of
圖片參考:http://upload.wikimedia.org/math/7/6/0/760e263bbe0c0151e575941291b5c190.png
, often giving a finite answer.


參考: David Foster Wallace (2004). Everything and More: A Compact History of Infinity. Norton, W. W. & Company, Inc.. ISBN 0-393-32629-2
2007-02-11 2:03 am
There is no actual value of "infinite number", because "infinite" mean endless, "infinite number" represent an ultimate value that do no has an actual value, as any numbers (x) have a number larger than it (x+1).

Actually "infinite number" is a concept rather than a number.


收錄日期: 2021-04-29 19:06:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070210000051KK03239

檢視 Wayback Machine 備份