Trigonometry

2007-02-08 4:07 am
Express the form to rsin(θ-β)

3cosθ-sinθ
更新1:

r 0 , 0

更新2:

r 0 , 0

更新3:

要計算β的值

更新4:

但答案是 sq.root10 sin ((θ-251.6)

更新5:

但是別忘記β是在quadrant 3,我們應該加180度。

回答 (2)

2007-02-08 4:16 am
3cosθ-sinθ = rsin(θ-β)
= rsinθcosβ - rcosθsinβ
so rcosβ = -1, rsinβ = -3
r²cos²β + r²sin²β = (-1)² + (-3)²
r² = 10
r = -√10
rsinβ/rcosβ = 3
tanβ = 3
β = 71.57 °

so 3cosθ-sinθ = -√10sin(θ-71.57 °)

2007-02-07 20:17:02 補充:
β is corr to 4 s.f.
2007-02-08 4:13 am
3cosθ-sinθ
=√10[(3/√10)(cosθ)-(1/√10)(sinθ)]
=√10[(sinβ)(cosθ)-(cosβ)(sinθ)] where sinβ=3/√10
=-√10[(cosβ)(sinθ)-(cosθ)(sinβ)]
=-√10sin(θ-β)


2007-02-07 20:26:45 補充:
sinβ=3/√10β=71.565計不到你的答案


收錄日期: 2021-04-25 16:53:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070207000051KK03371

檢視 Wayback Machine 備份