What is digital circuits? ( QUICK ! , 10 MARKS )

2007-02-06 5:55 am
What is digital circuits?

quick plz.

thx a lot for everyone who help me!

: )

回答 (1)

2007-02-06 12:52 pm
✔ 最佳答案
Digital electronics are those electronics systems that use a digital signal instead of an analog signal. Digital electronics are the most common representation of Boolean algebra and are the basis of all digital circuits for computers, mobile phones, and numerous other consumer products.
The most common "fundamental unit" of digital electronics is the logic gate. By combining numerous logic gates (from tens to hundreds of thousands) more complex systems can be created. The complex system of digital electronics is collectively referred to as a digital circuit.
To most electronic engineers, the terms "digital circuit", "digital system" and "logic" are interchangeable in the context of digital circuits.
Advantages The usual advantages of digital circuits when compared to analog circuits are:
Digital systems interface well with computers and are easy to control with software. It is often possible to add new features to a digital system without changing hardware, and to do this remotely, just by uploading new software. Design errors or bugs can be worked-around with a software upgrade, after the product is in customer hands.Information storage can be much easier in digital systems than in analog ones. In particular, the great noise-immunity of digital systems makes it possible to store data and retrieve it later without degradation. In an analog system, aging and wear and tear will degrade the information in storage, but in a digital system, as long as the wear and tear is below a certain level, the information can be recovered perfectly.
Disadvantages Digital circuits use more energy than analog circuits to accomplish the same calculations and signal processing tasks, thus producing more heat as well. In portable or battery-powered systems this can be a major limiting factor, but in a situation where power is plentiful, a digital system is often preferred because of all the advantages listed above, especially that of (re-)programmability and ease of upgrading without requiring hardware changes.
A particular example is the cellular telephone, which being a battery-powered portable device, uses a low-power analog front-end to acquire and tune in the radio signal from the base station. The base station, being in a fixed location with access to the power grid, can afford to use power-hungry software-defined (digital) radio techniques that digitize the signal essentially at the antenna (after wideband filtering and downconversion to intermediate frequency) and performs all channelization and demodulation via software-driven calculations. Such base stations can be reprogrammed, potentially via remote control, to process the signals used in future cellular standards as those standards become available.
Digital circuits are sometimes more expensive, especially in small quantities.
The world in which we live is analog, and signals from this world such as light, temperature, sound, electrical conductivity, electric and magnetic fields, and phenomena such as the flow of time, are for most practical purposes continuous and thus analog quantities rather than discrete digital ones. For a digital system to do useful things in the real world, translation from the continuous realm to the discrete digital realm must occur, resulting in quantization errors. This problem can usually be mitigated by designing the system to store enough digital data to represent the signal to the desired degree of fidelity. The Nyquist-Shannon sampling theorem provides an important guideline as to how much digital data is needed to accurately portray a given analog signal.

圖片參考:http://en.wikipedia.org/skins-1.5/common/images/magnify-clip.png
A digital circuit that acts as a binary clock, hand-wired on a series of breadboards


收錄日期: 2021-04-18 20:42:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070205000051KK04415

檢視 Wayback Machine 備份