triangle sine and cos law---thz

2007-02-04 1:42 am
In triangle ABC, prove that:

sin^2 (A) = sin^2 (B) + sin^2(C) - 2sinB sinC cosA

回答 (1)

2007-02-04 2:01 am
✔ 最佳答案
cos(A-B)-cos(A+B)=2sinAsinB
cos(A+B)+cos(A-B)=2cosAcosB
sin^2 B + sin^2C - 2sinB sinC cosA
=sin^2 B + sin^2C - [cos(B-C)-cos(B+C)] cosA
=sin^2 B + sin^2C - [cos(B-C)-cos(180-A)] cosA
=sin^2 B + sin^2C - [cos(B-C)+cosA] cosA
=sin^2 B + sin^2C - cos(B-C)cosA-cos^2A
=sin^2 B + sin^2C + cos(B-C)cos(B+C)-cos^2A
=sin^2 B + sin^2C + 1/2[cos(2B)+cos(2C)]-cos^2A
=sin^2 B + sin^2C + 1/2[2cos^2B-1+2cos^2C-1]-cos^2A
=sin^2 B + sin^2C + cos^2B+cos^2C-1-cos^2A
=1-cos^2A
=sin^2A


收錄日期: 2021-04-25 16:54:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070203000051KK03020

檢視 Wayback Machine 備份