✔ 最佳答案
體積,或稱容量、容積,是物件佔有多少空間的量。體積的國際單位制是立方米。
一件固體物件的體積是一個數值用以形容該物件在三維空間所佔有的空間。一維空間物件(如線)及二維空間物件(如正方形)在三維空間中均是零體積的。
在數學上,體積是以積分的方式來定義的,即將某物件切割成大量的小正方體或concentric cylindrical shells,把所有這些小立體的體積加起來而求得的。The generalization of volume to arbitrarily many dimensions is called content. In differential geometry, volume is expressed by means of the volume form.
體積和容量在有些時候是不同的,因容量是指某容器的承載量(以升來量度),而體積則是指某物件排出的空間量(以立方米來量度)。
Volume is a fundamental parameter in thermodynamics and it is conjugate to pressure
體積公式
一般體積的方程式:
形狀
方程式
變數
立方體:
圖片參考:
http://upload.wikimedia.org/math/e/4/4/e44010f66dd9dd6406531a6fc3a0cb4a.png
(s是立方體的一邊邊長)
長方柱體:
圖片參考:
http://upload.wikimedia.org/math/7/e/2/7e2b8aeb51cd37d052bf852e9c4a7491.png
(l是長,w是闊,h是高)
圓柱體:
圖片參考:
http://upload.wikimedia.org/math/d/c/8/dc8ab59c1dd0bd719284b42c5c273a2e.png
(r = 底圓的半徑, h = 高)
球體:
圖片參考:
http://upload.wikimedia.org/math/9/3/a/93a32e52c9580c5f627ace8dc3ad6397.png
(r = 球體的半徑) - (which is the first integral of the formula for Surface Area of a sphere
An ellipsoid:
圖片參考:
http://upload.wikimedia.org/math/a/b/d/abd787ced5690e6fca581b0df1f64e01.png
(a, b, c = semi-axes of ellipsoid)
長方錐體:
圖片參考:
http://upload.wikimedia.org/math/0/f/7/0f751a2ee6e3fc58d5417ef6d6ca689b.png
(A = 底面積,h = 由尖頂至底的高)
圓錐體:
圖片參考:
http://upload.wikimedia.org/math/2/4/2/242324296b597d1761cb0c4ef86f49de.png
(r = 底圓的半徑,h = 由尖頂至底的高)
Any prism that has a constant cross sectional area along the height**:
圖片參考:
http://upload.wikimedia.org/math/7/4/1/741a059183c2039e948c0ffe7028392c.png
(A = area of the base, h = height)
Any figure (calculus required)
圖片參考:
http://upload.wikimedia.org/math/0/3/f/03fa7bb5b25ec3cc51c400f275de6a78.png
where h is any dimension of the figure, and A(h) is the area of the cross-sections perpendicular to h described as a function of the position along h; this will work for any figure (no matter if the prism is slanted or the cross-sections change shape).
The volume of a parallelepiped is the absolute value of the scalar triple product of the subtending vectors, or equivalently the absolute value of the determinant of the corresponding matrix.
The volume of any tetrahedron, given its vertices a, b, c and d, is (1/6)·|det(a−b, b−c, c−d)|, or any other combination of pairs of vertices that form a simply connected graph.