F4 maths problem( Trigonometric )

2007-02-01 7:11 am
1. Show that x + 1 is the only linear factor of x^3 + 2x^2 + 4x + 3.

2. Solve 8cos^3θ + 8cos^2θ + 8cosθ +3 = 0 for 0° < θ < 360°
( Hint :Let x = 2cosθ )

回答 (1)

2007-02-01 7:22 am
✔ 最佳答案
1) Let f(x) = x^3 + 2x^2 + 4x + 3
f(-1) = -1 + 2 - 4 + 3 = 0
Thus, (x + 1) is a factor of f(x)
f(x) = (x + 1)(x^2 + x + 3)

discriminant of (x^2 + x + 3) = 1^2 - 4(1)(3) = -11 < 0
Thus, (x^2 + x + 3) cannot be factorized from quadratic factor to linear factor
Thus, (x + 1) is the only linear factor of f(x) = x^3 + 2x^2 + 4x + 3


2)8(cosθ)^3 + 8(cosθ)^2 + 8cosθ +3 = 0, Let x = 2cosθ
x^3 + 2x^2 + 4x +3 = 0
By Q1, x^3 + 2x^2 + 4x +3 = (x + 1)(x^2 + x + 3) = 0
x = -1 or no real solutions
2cosθ = -1
cosθ = -0.5
θ = 120°, 240°


收錄日期: 2021-04-18 20:15:10
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070131000051KK04602

檢視 Wayback Machine 備份