urgent !(Sequences)

2007-02-01 1:52 am
Given that {sn} converges to s and s > 0.

(a) Prove that there exists N ∈ Nature Numbers such that for any n ∈ Nature Numbers , if n > N then sn > 0.

(b) Use ε-N definition to prove that { 3√sn} converges to 3√s.

[Hint: Recall that a^3 − b^3 = (a − b)(a^2 + ab + b^2).]


p.s.........3√s = s開方3次.........



發問過的問題,
b part始終不太懂得個做法

謝謝
更新1:

唔識b part點做

回答 (2)

2007-02-01 3:23 am
✔ 最佳答案
你明白(a) part 貓朋點做吧﹐我集中精力寫靚佢個(b) part 啦

2. Given that {sn} converges to s and s > 0.

(a) Prove that there exists N ∈ Nature Numbers such that for any n ∈ Nature Numbers , if n > N then sn > 0.

Since sn →s , this means that given any ε>0 , there exits N=N(ε) such that

|sn – s| <ε whenever n > N. In particular, take ε1= s/2 , then

|sn – s| <ε whenever n > N1(ε1=s/2) and this means

-s/2 <sn – s < s/2

0< s/2 < sn < 3s/2 whenever n > N1



(b) Use ε-N definition to prove that { 3√sn} converges to 3√s.

[Hint: Recall that a^3 − b^3 = (a − b)(a^2 + ab + b^2).]



Let v= ³√s and vn= ³√sn

s=v^3 and sn=(vn)^3

From (a), we have 0< s/8 < s/2 <sn whenever n > N1(ε1=s/2) (remember s is positive) , hence

0< s/8 <sn

0< v^3/8 < (vn)^3 whenever n > N1(ε1=s/2)

0<(v/2)^3<(vn)^3

0<v/2<vn (because v and vn are positive)

Then

(v^2 + v * vn + (vn)^2 ) > (v^2 + v * v/2 + (v/2)^2 ) = 7v^2 /4...(*)

Besides,

|sn – s|

=|(vn)^3-v^3|

= |(vn – v)( v^2 + v * vn + (vn)^2) | [using hint]

= |vn – v| | v^2 + v * vn + (vn)^2 |

Rearranging

|vn – v|

= |sn – s| /| | v^2 + v * vn + (vn)^2 |

< |sn – s| / (7v^2 /4) [using (*)]

Also, we have when n>N2(ε2)

|sn – s|<ε2

[where (ε2=7v^2ε/4), notive that when ε→0, ε2→0. Because v=³√s is a finite number]

Now, given let N(ε)=max(N1,N2) , then when n>N(ε)

|vn – v|

< |sn – s| /( 7v^2 /4)

< ε2 / (ε2 /ε)



So, ³√sn→³√s


2007-02-01 1:55 am
我唔明你想問咩!
參考: me


收錄日期: 2021-04-25 16:52:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070131000051KK02332

檢視 Wayback Machine 備份