✔ 最佳答案
Solve the following equations for 0°≦θ<360°.
1. ( sinθ + cosθ )(sinθ - cosθ) = 1
(sinθ + cosθ)(sinθ - cosθ) = 1
sin2θ - cos2θ = 1 【Using identity a2-b2=(a-b)(a+b)】
cos2θ - sin2θ = -1
cos2θ = -1 【Using identity cos2A = cos2A-sin2A】
2θ = π or 2θ = 3π
θ = π/2 or θ = 3π/2
================================
2. 1/sinθ + sinθ - 2 = 0
1/sinθ + sinθ - 2 = 0 【Assume sinθ not equals to 0】
1 + sin2θ - 2sinθ = 0
sin2θ - 2sinθ + 1 = 0
(sinθ - 1)2 = 0
sinθ - 1 = 0
sinθ = 1
θ = π/2
================================
3. cos2θ = sinθ ( 1 + sinθ )
cos2θ = sinθ(1 + sinθ)
cos2θ = sinθ + sin2θ
1 - sin2θ = sinθ + sin2θ 【Using identity sin2A+cos2A=1】
2sin2θ + sinθ - 1 = 0
(2sinθ - 1)(sinθ + 1) = 0
2sinθ - 1 = 0 or sinθ + 1 = 0
sinθ = 1/2 or sinθ = -1
θ = π/6 or θ = 5π/6 or θ = 3π/2
================================
4.cos4θ - 3cos2θ + 2 = 0
cos4θ - 3cos2θ + 2 = 0
(cos2θ - 2)(cos2θ - 1) = 0
cos2θ - 2 = 0 or cos2θ - 1 = 0
cos2θ = 2 (rejected as 0 ≦ cos2θ ≦ 1) or cos2θ = 1
cosθ = 1 or cosθ = -1
θ = 0 or θ = π