Reduction Formula

2007-01-28 1:01 pm
use an appropriate reduction formula, evaluate, in terms of e, the intergral
intergrate x^5 e^x dx , the interval [1,0]

回答 (1)

2007-01-28 4:50 pm
✔ 最佳答案
∫u dv = u v - ∫v du

For any positive integer n,
∫x^n e^x dx  (Note: All the "from 0 to 1" are omitted in the integral signs below.)
= ∫x^n d(e^x)
= x^n (e^x) |{from 0 to 1} - ∫e^x d(x^n)
= e - n ∫x^(n-1) e^x dx

Therefore,
∫x^5 e^x dx
= e - 5 ∫x^4 e^x dx
= e - 5e + 5•4∫x^3 e^x dx
= e - 5e + 5•4 e - 5•4•3∫x^2 e^x dx
= e - 5e + 5•4 e - 5•4•3 e + 5•4•3•2 ∫x e^x dx
= e - 5e + 5•4 e - 5•4•3 e + 5•4•3•2 e - 5•4•3•2•1 ∫e^x dx
= e - 5e + 5•4 e - 5•4•3 e + 5•4•3•2 e - 5•4•3•2•1 [e^x] |{from 0 to 1}
= e - 5e + 5•4 e - 5•4•3 e + 5•4•3•2 e - 5•4•3•2•1 (e - 1)
= e - 5e + 20e - 60e + 120e - 120e + 120
= -44e + 120.


收錄日期: 2021-04-25 20:16:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070128000051KK00549

檢視 Wayback Machine 備份