Challenging!

2007-01-27 7:53 pm
1. a) Given that a is a root of the equation x^2-2x-2=0. Show that a^3 = 6a+4.
b) Using (a), find the value of a^3+b^3.
( I just know how to find it by not using a))
更新1:

2. If in triangle ABC, (ab^2)cosA = (bc^2)cosB = (ca^2)cosC. Prove that the triangle is equilateral. 3. By using Sine and Cosine Formular, prove that a(bsinC - ccosB) = b^2-c^2

回答 (2)

2007-01-29 5:06 am
✔ 最佳答案
Let me finish Q2 and Q3 for you:
2) Looking into ab2cos A = bc2cos B and applying the sine formula, we have:
c/sin C = b/sin B
c2/sin2 C = b2/sin2 B
c2 = b2sin2 C/sin2 B
Also, a/b = sin A/sin B
∴ab2cos A = bc2cos B
ab2cos A = bcos B(b2sin2 C/sin2 B)
acos A = bsin2 Ccos B/sin2 B
a/b = (sin2 Ccos B)/(sin2 Bcos A)
sin A/sin B = (sin2 Ccos B)/(sin2 Bcos A)
sin A cos A sin B = sin2 C cos B
sin A(1/2)[sin (B+A) + sin (B-A)] = sin C(1/2)[sin (C+B) + sin (C-B)]
sin Asin (π-C) + sin Asin (B-A) = sin Csin (π-A) + sin Csin (C-B)
sin Asin C + sin Asin (B-A) = sin Csin A + sin Csin (C-B)
sin Asin (B-A) = sin Csin (C-B)
-2{cos[A+(B-A)]/2}{cos[A-(B-A)]/2} = -2{cos[C+(C-B)]/2}{cos[C-(C-B)]/2}
cos(B/2)cos[A-(B/2)] = cos(B/2)cos[C-(B/2)]
∴cos(B/2) = 0 (rejected since B < π) or
cos[A-(B/2)] = cos[C-(B/2)]
For 0 < A,B,C < π, A-(B/2) = C-(B/2)
∴ A = C
Redoing the same deductions for another pair of equality, we can obtain A = B or C = B and hence △ABC is an equilateral triangle.
3) Let me start with a(b cosC - c cosB) first and explain in the latter part.
a(b cosC - c cosB) = ab cos C - ac cos B
In △ABC, by the cosine formula:
b2 = a2 + c2 - 2ac cos B ... (1)
c2 = a2 + b2 - 2ab cos C ... (2)
(1) - (2) yields:
b2 - c2 = c2 - 2ac cos B - b2 + 2ab cos C
2(b2 - c2) = 2ab cos C - 2ac cos B
∴ab cos C - ac cos B = b2 - c2
(You may use a simple right-angled triangle with sides 3,4 and 5 to check against my result and the one you stated in the question.)
參考: My Maths knowledge
2007-01-27 8:09 pm
1. a) Given that a is a root of the equation x^2-2x-2=0. Show that a^3 = 6a+4.
b) Using (a), find the value of a^3+b^3.
( I just know how to find it by not using a))
(a)
a^2-2a-2=0
a^3
=(2a+2)a
=2a^2+2a
=2(2a+2)+2a
=6a+4
(b)
I think b is another root of the equation x^2-2x-2=0
b^3=6b+4
a^3+b^3
=6a+4+6b+4
=6(a+b)+8
=6(2)+8 (sum of the roots)
=20


收錄日期: 2021-04-23 16:37:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070127000051KK01243

檢視 Wayback Machine 備份