數學歸納法....唔識呀 , 救命 !!! 好難呀

2007-01-27 3:56 am
(a) Prove, by the mathematical induction , that for all positive integers n ,
1^3 + 2^3 + 3^3 + ... + (2n)^3 = n^2(2n + 1)^2


(b) Using the formula in (a) find the sum of
1^3 + 3^3 + 5^3 + ... + 95^3 .
更新1:

When n = 1, L.H.S. = 1³ + 2³ = 9        R.H.S. = 1 • 3² = 9 = L.H.S. 我唔e 到....可以講解下ma ?

更新2:

L.H.S. = 1³ + 2³ + 3³ + ... + (2k)³ + (2k + 1)³ + (2k + 2)³ e 到都唔明 , 可以詳細解釋ma ??

回答 (3)

2007-01-27 5:10 am
✔ 最佳答案
(a)

For n = 1,
LHS = 1^3 + 2^3 = 1 + 8 = 9 [Focus on the general term (2n)^3, we have to sum until n = 1, i.e. 2^3.]
RHS = (1^2)[(2+1)^2] = (1)(9) = 9
LHS = RHS.

For n = k+1,
1^3 + 2^3 + 3^3 + ... + (2k)^3 + (2k+1)^3 + [2(k+1)]^3
[Be reminded that we have to sum until [2(k+1)]^3. However, between 2k and 2(k+1), there is 2k+1.]

= (k^2)[(2k+1)^2] + (2k+1)^3 + [2(k+1)]^3
[Use the assume for n = k here.]

= [(2k+1)^2][k^2 + (2k+1)] + [2(k+1)]^3
[Consider the "future" RHS [(k+1)^2]{[2(k+1)+1]^2}, we have to factorize and take (k+1)^2 outside.]

= [(2k+1)^2](k^2 + 2k + 1) + [2(k+1)]^3
["Making" (k+1)^2.]

= [(2k+1)^2][(k+1)^2] + (2^3)[(k+1)^3]

= [(k+1)^2][(2k+1)^2 + 8(k+1)]

= [(k+1)^2][(2k+1)^2 + 4(2k+2)]
[Just keep 2k+2 as I am lazy to expand (2k+1)^2. You should know the "lazyness" advantage. ^_^]

= [(k+1)^2][(2k+1)^2 + 4(2k+1+1)]

= [(k+1)^2][(2k+1)^2 + 4(2k+1) + 4]

= [(k+1)^2]{[(2k+1)+2]^2}

= [(k+1)^2]{[(2k+2)+1]^2}

= [(k+1)^2]{[2(k+1)+1]^2}



(b)

We can't use the formula in (a) to solve the sum directly. As you see, the formula in (a) are used to find the sum of the cubes of nature numbers until n. The question in (b) are used to find the sum of the cubes of odd numbers until 95.

Therefore, we can find the sum of the cubes of nature numbers, then minus that of the even numbers.

1^3 + 3^3 + 5^3 + ... + 95^3

= 1^3 + 2^3 + 3^3 + ... + 96^3 - (2^3 + 4^3 + 6^3 + ... + 96^3)

= (48^2){[2(48)+1]^2} - {[(2)(1)]^3 + [(2)(2)]^3 + [(2)(3)]^3 + ... + [(2)(48)]^3}
[As 2n = 96, n = 96/2 = 48.]

= (48^2)(97^2) - [(2^3)(1^3) + (2^3)(2^3) + (2^3)(3^3) + ... + (2^3)(48^3)]

= (48^2)(97^2) - (2^3)(1^3 + 2^3 + 3^3 + ... + 48^3)

= (48^2)(97^2) - (2^3){(24^2)[2(24)+1]^2}
[As 2n = 48, n = 48/2 = 24.]

= (48^2)(97^2) - (2^3)(24^2)(49^2)

= [(48)(97)]^2 - (8){[(24)(49)]^2}
[Lazy??]

= 10614528
2007-01-27 4:28 am
Part (a) should be a normal M.I. question. Part (b) is a little bit more tricky but you should learn to identify the pattern, or the relationship between parts (a) and (b).

(a)
To prove
"1³ + 2³ + 3³ + ... + (2n)³ = n² (2n + 1)² "
for any positive integer n.
When n = 1, L.H.S. = 1³ + 2³ = 9
       R.H.S. = 1 • 3² = 9 = L.H.S.
 i.e. the statement holds when n = 1.
Assume the statement holds when n = k, for some positive integer k,
 i.e. 1³ + 2³ + 3³ + ... + (2k)³ = k² (2k + 1)².
Then, when n = k+1,
  L.H.S. = 1³ + 2³ + 3³ + ... + (2k)³ + (2k + 1)³ + (2k + 2)³
     = k² (2k + 1)² + (2k + 1)³ + (2k + 2)³ , by the assumption
     = (k² + 2k + 1) (2k + 1)² + (2k + 2)³
     = (k + 1)² (2k + 1)² + 8 (k + 1)³
     = (k + 1)² [(2k + 1)² + 8 (k + 1)]
     = (k + 1)² (4k² + 12k + 9)
     = (k + 1)² (2k + 3)² = R.H.S.
 i.e. if the statement holds when n = k, it also holds when n = k + 1.
By the principle of mathematical induction,
 1³ + 2³ + 3³ + ... + (2n)³ = n² (2n + 1)²
 for all positive integers n.

(b)
1³ + 3³ + 5³ + ... + 95³
= (1³ + 2³ + 3³ + ... + 96³) - (2³ + 4³ + 6³ + ... + 96³)
= (1³ + 2³ + 3³ + ... + 96³) - 8 (1³ + 2³ + 3³ + ... + 48³)
= 48² (96 + 1)² - 8 • 24² (48 + 1)²
= 21 678 336 - 11 063 808
= 10 614 528.
2007-01-27 4:24 am
For n=1
RHS
= n^2(2n + 1)^2
= 1^2 . 3^2
= 9
= 1^3 + 2^3
= LHS

If the proposition is true for n=p, for n=p+1
LHS
= p^2(2p + 1)^2 + (2p+1)^3 + (2p+2)^3
= (p^2 + 2p + 1)(2p + 1)^2+ (2p+2)^3
= (p+1)^2(2p + 1)^2+ 8(p+1)^3
= (p+1)^2 ((2p + 1)^2+ 8(p+1))
= (p+1)^2 (4p^2 + 12p + 9)
= (p+1)^2 (2(p+1)+1)^2
= RHS

So proved.


收錄日期: 2021-04-29 18:52:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070126000051KK03081

檢視 Wayback Machine 備份