何謂畢氏定理?(快+詳細)thanks!

2007-01-25 1:29 am
何謂畢氏定理?(快+詳細)thanks!(

回答 (4)

2007-01-25 2:29 am
西方國家普遍相信「畢氏定理」是由古希臘數學家畢達哥拉斯 (Pythagoras, 公元前 572 至公元前 492 年)發現的,或者是至少是由他證明的。其實早在公元前 1100年左右,中國數學家商高已發現「勾三、股四、弦五」的關係,並用它作計算及測量,所以此定理又稱「勾股定理」或「商高定理」。勾指直角三角形中短的直角邊,股為長的直角邊,弦為斜邊。

「畢氏定理」相傳和《周髀算經》有關!

而《周髀算經》寫於西漢中期(公元前一百年左右)。這本書的內容記述了周代的數學問題。「髀」的原意是股或股骨,所以叫做《周髀算經》。「髀」在這裏的意思是指長八尺的日規,日規是量度日影來計算時間的儀器。這部數學典籍中,記載了古人怎樣用簡單的方法計算出太陽與地球間的距離。《周髀算經》求太陽與地球間之距離的方法頗複雜。以下是簡化了它的計算方法。
2007-01-25 1:44 am
draw a right-angled triangle,

the square of hypotenuse is equal to the sum of the squares of the other two sides
2007-01-25 1:39 am
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a relation in Euclidean geometry among the three sides of a right triangle. The theorem is named after the Greek mathematician Pythagoras, who by tradition is credited with its discovery,[1] although knowledge of the theorem almost certainly predates him. The theorem is known in China as the "Gougu theorem" (勾股定理) for the (3, 4, 5) triangle and in India as the "Bhaskara theorem" (after the 12th century mathematician Bhaskara).


The Pythagorean theorem: The sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c).The theorem is as follows:

In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (i.e. the two sides other than the hypotenuse).

If we let c be the length of the hypotenuse and a and b be the lengths of the other two sides, the theorem can be expressed as the equation


This equation provides a simple relation among the three sides of a right triangle so that if the lengths of any two sides are known, the length of the third side can be found. A generalization of this theorem is the law of cosines, which allows the computation of the length of the third side of any triangle, given the lengths of two sides and the size of the angle between them.

This theorem may have more known proofs than any other. The Pythagorean Proposition, a book published in 1940, contains 370 proofs of Pythagoras' theorem, including one by American President James Garfield.

The converse of the theorem is also true:

For any three positive numbers a, b, and c such that a² + b² = c², there exists a triangle with sides a, b and c, and every such triangle has a right angle between the sides of lengths a and b.

勾股定理,又稱商高定理,西方稱畢達哥拉斯定理或畢氏定理(英文:Pythagorean theorem或Pythagoras's theorem)是一個基本的幾何定理,相傳由古希臘的畢達哥拉斯首先證明。據說畢達哥拉斯證明了這個定理後,即斬了百頭牛作慶祝,因此又稱「百牛定理」。在中國,相傳於商代就由商高發現,記載在一本名為《周髀算經》的古書中。而三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細注釋。法國和比利時稱為驢橋定理,埃及稱為埃及三角形。

一種證明方法的圖示:左右兩正方形面積相等,各扣除四塊藍色三角形後面積仍相等勾股定理指出:
直角三角形兩直角邊(即「勾」,「股」)邊長平方和等於斜邊(即「弦」)邊長的平方。
也就是說,

設直角三角形兩直角邊為a和b,斜邊為c,那麼
a² + b² = c²
勾股定理現發現約有400種證明方法,是數學定理中證明方法最多的定理之一。


在公元前500-200年,周髀算經的圖解
[編輯] 勾股數組
勾股數組是滿足勾股定理a² + b² = c²的正整數組(a,b,c),其中的a,b,c稱為勾股數。例如(3,4,5)就是一組勾股數組。

任意一組勾股數(a,b,c)可以表示為如下形式:a = k(m² − n²),b = 2kmn,c = k(m² + n²),其中。
2007-01-25 1:32 am
勾股定理,又稱商高定理,西方稱畢達哥拉斯定理或畢氏定理(英文:Pythagorean theorem或Pythagoras's theorem)是一個基本的幾何定理,相傳由古希臘的畢達哥拉斯首先證明。據說畢達哥拉斯證明了這個定理後,即斬了百頭牛作慶祝,因此又稱「百牛定理」。在中國,相傳於商代就由商高發現,記載在一本名為《周髀算經》的古書中。而三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細注釋。法國和比利時稱為驢橋定理,埃及稱為埃及三角形。


定理

一種證明方法的圖示:左右兩正方形面積相等,各扣除四塊藍色三角形後面積仍相等勾股定理指出:

直角三角形兩直角邊(即「勾」,「股」)邊長平方和等於斜邊(即「弦」)邊長的平方。
也就是說,

設直角三角形兩直角邊為a和b,斜邊為c,那麼
a2 + b2 = c2
勾股定理現發現約有400種證明方法,是數學定理中證明方法最多的定理之一。


在公元前500-200年,周髀算經的圖解
勾股數組
勾股數組是滿足勾股定理a2 + b2 = c2的正整數組(a,b,c),其中的a,b,c稱為勾股數。例如(3,4,5)就是一組勾股數組。

任意一組勾股數(a,b,c)可以表示為如下形式:a = k(m2 − n2),b = 2kmn,c = k(m2 + n2),其中。


收錄日期: 2021-04-12 15:58:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070124000051KK02129

檢視 Wayback Machine 備份