✔ 最佳答案
In order to prove this by first principle, we need the following expansion
e^x =1 +x +(x^2 /2!) +(x^3 /3!)+(x^4 /4!)+.....+(x^n /n!) +.......
Now,
d/dx e^x
=lim_(Δx to 0){ e^(x+Δx) - e^x}/Δx
=lim_(Δx to 0){ e^x (e^Δx) - 1)}/Δx
=lim_(Δx to 0){ e^x (Δx +(Δx^2 /2!) +.......)}/Δx
=lim_(Δx to 0){ e^x (1 +(Δx /2!) +.......)}
= e^x (1 +(0 /2!) +.......)
= e^x (1 +0 )
=e^x
圖片參考:
http://us.a2.yahoofs.com/users/45b36d09zd8f9dafd/1bf2scd/__sr_/ffefscd.jpg?phwm3sFBPgKHle.3
2007-01-22 22:04:55 補充:
d/dx e^x=lim_(Δx -> 0){ e^(x+Δx) - e^x}/Δx=lim_(Δx -> 0){ e^x (e^Δx - 1)}/Δx=lim_(Δx -> 0){ e^x ( 1 +Δx +(Δx^2 /2!) +....... -1)}/Δx
2007-01-22 22:05:22 補充:
=lim_(Δx -> 0){ e^x (Δx +(Δx^2 /2!) +.......)}/Δx=lim_(Δx -> 0){ e^x (1 +(Δx /2!) +.......)}= e^x (1 +(0 /2!) +.......)= e^x (1 +0 )=e^x