✔ 最佳答案
Q.1(i)
R.H.S. = cos³2A
= (cos²A - sin²A) ³
= (cosA)^6 - 3 (cosA)^4 sin²A + 3 cos²A (sinA)^4 - (sinA)^6
= (cosA)^6 - 3 (cosA)^4 • (1 - cos²A) + 3 (1 - sin²A) • (sinA)^4 - (sinA)^6
= 4 (cosA)^6 - 3 (cosA)^4 + 3 (sinA)^4 - 4 (sinA)^6
= cos³A (4cos³A - 3cosA) + sin³A (3sinA - 4sin³A)
= cos3A cos³A + sin3A sin³A = L.H.S.
Q.1(ii)
L.H.S. = (cos3A + 2cos2A + 7cosA + 6) / (8cosA - 2sinA sin2A)
= [ (4cos³A - 3cosA) + 2 (2cos²A - 1) + 7cosA + 6 ] / [8cosA - 2sinA • (2sinAcosA)]
= (4cos³A + 4cos²A + 4cosA + 4) / [8cosA - 4cosA • (1 - cos²A)]
= [(4cos³A + 4cosA) + (4cos²A + 4)] / (4cos³A + 4cosA)
= 1 + 1/cosA
= 1 + secA
Q.2
x³ + 3(√3)x² - 3x - (√3) = 0 .................<1>
Putting x = tanA,
tan³A + 3(√3)tan²A - 3tanA - (√3) = 0
tan³A - 3tanA = - 3(√3)tan²A + (√3)
tan³A - 3tanA = (√3) (1 - 3tan²A) .......... <2>
Case 1: If 1 - 3tan²A = 0,
Then,
x = tanA = ±(√3)
Putting into <1>,
L.H.S. = x³ - 3x + 3(√3)x² - (√3)
= x • (x² - 3) + 3(√3)x² - (√3)
= x • (3 - 3) + 3(√3) • 3 - (√3)
= 0 + 9(√3) - (√3)
= 8(√3) ≠ 0 = R.H.S.
Thus, no solution.
Case 2: If 1 - 3tan²A ≠ 0
Then,
from <2>,
(tan³A - 3tanA) / (1 - 3tan²A) = (√3)
tan3A = (√3)
3A = -2π/3, π/3, 4π/3 ........ for -π/2 < A < π/2, i.e. -3π/2 < 3A < 3π/2
A = -2π/9, π/9, 4π/9
tanA = tan(-2π/9), tan(π/9), tan(4π/9) ≈ -0.84, +0.36, +5.67 , to 2 decimal places.
Combining the cases,
x = tanA ≈ -0.84, +0.36, +5.67 , to 2 decimal places.
2007-01-17 23:49:57 補充:
A careless mistake was made. Corrected here:Case 2 of Q.2 should be(tan³A - 3tanA) / (1 - 3tan²A) = (√3)- tan3A =√33A = +2π/3, -π/3, -4π/3Thus, x = tanA ≈ +0.84, -0.36, -5.67.Note: -π/2 < A < π/2, as this is the principle domain of "tan A"So, -3π/2 < 3A < 3π/2.