A. maths

2007-01-18 2:45 am
prove
tanθ*1-sinθ/1+cosθ=cotθ*1-cosθ/1+sinθ

回答 (4)

2007-01-18 3:00 am
✔ 最佳答案
[tanθ(1-sinθ)]/(1+cosθ)
=[(sinθ/cosθ)(1-sinθ)(1-cosθ)]/[(1+cosθ)(1-cosθ)]
=[(sinθ/cosθ)(1-sinθ)(1-cosθ)]/[1-(cosθ)^2]
=[(sinθ/cosθ)(1-sinθ)(1-cosθ)]/[(sinθ)^2]
=[(1-sinθ)(1-cosθ)]/[(cosθ)(sinθ)]

[cotθ(1-cosθ)]/(1+sinθ)
=[(cosθ/sinθ)(1-sinθ)(1-cosθ)]/[(1+sinθ)(1-sinθ)]
=[(cosθ/sinθ)(1-sinθ)(1-cosθ)]/[1-(sinθ)^2]
=[(cosθ/sinθ)(1-sinθ)(1-cosθ)]/[(cosθ)^2]
=[(1-sinθ)(1-cosθ)]/[(cosθ)(sinθ)]

2007-01-18 14:18:52 補充:
下面那兩個不錯嘛, 連括號和相乘次序都跟我的答案一樣.如果真的是自己計的話, 那我應該是抄你的吧.
2007-01-19 1:08 am
正確ans.:
L.H.S.=[(sinθ/cosθ)(1-sinθ)(1-cosθ)]/[(1+cosθ)(1-cosθ)]
=[(sinθ/cosθ)(1-sinθ)(1-cosθ)]/[1-(cosθ)^2]
=[(sinθ/cosθ)(1-sinθ)(1-cosθ)]/[(sinθ)^2]
=[(1-sinθ)(1-cosθ)]/[(cosθ)(sinθ)]

R.H.S.=[(cosθ/sinθ)(1-sinθ)(1-cosθ)]/[(1+sinθ)(1-sinθ)]
=[(cosθ/sinθ)(1-sinθ)(1-cosθ)]/[1-(sinθ)^2]
=[(cosθ/sinθ)(1-sinθ)(1-cosθ)]/[(cosθ)^2]
=[(1-sinθ)(1-cosθ)]/[(cosθ)(sinθ)]
=L.H.S.

2007-01-28 14:01:43 補充:
good ans.
2007-01-18 4:33 am
1.[tanθ(1-sinθ)]/(1+cosθ)
=[(sinθ/cosθ)(1-sinθ)(1-cosθ)]/[(1+cosθ)(1-cosθ)]
=[(sinθ/cosθ)(1-sinθ)(1-cosθ)]/[1-(cosθ)^2]
=[(sinθ/cosθ)(1-sinθ)(1-cosθ)]/[(sinθ)^2]
=[(1-sinθ)(1-cosθ)]/[(cosθ)(sinθ)]

2.[cotθ(1-cosθ)]/(1+sinθ)
=[(cosθ/sinθ)(1-sinθ)(1-cosθ)]/[(1+sinθ)(1-sinθ)]
=[(cosθ/sinθ)(1-sinθ)(1-cosθ)]/[1-(sinθ)^2]
=[(cosθ/sinθ)(1-sinθ)(1-cosθ)]/[(cosθ)^2]
=[(1-sinθ)(1-cosθ)]/[(cosθ)(sinθ)]
2007-01-18 3:12 am
[tanθ(1-sinθ)]/(1+cosθ)
=[(sinθ/cosθ)(1-sinθ)(1-cosθ)]/[(1+cosθ)(1-cosθ)]
=[(sinθ/cosθ)(1-sinθ)(1-cosθ)]/[1-(cosθ)^2]
=[(sinθ/cosθ)(1-sinθ)(1-cosθ)]/[(sinθ)^2]
=[(1-sinθ)(1-cosθ)]/[(cosθ)(sinθ)]


[cotθ(1-cosθ)]/(1+sinθ)
=[(cosθ/sinθ)(1-sinθ)(1-cosθ)]/[(1+sinθ)(1-sinθ)]
=[(cosθ/sinθ)(1-sinθ)(1-cosθ)]/[1-(sinθ)^2]
=[(cosθ/sinθ)(1-sinθ)(1-cosθ)]/[(cosθ)^2]
=[(1-sinθ)(1-cosθ)]/[(cosθ)(sinθ)]
參考: 自己計的


收錄日期: 2021-04-29 17:23:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070117000051KK03343

檢視 Wayback Machine 備份