有關血紅蛋白 (Haemoglobin)...
1) 血紅蛋白是什麼?
2) 缺乏血紅蛋白,身體會有乜問題?
3) 有乜野可以增加血紅蛋白?
回答 (3)
血红蛋白是高等生物体内负责运载氧的一种蛋白质,又名血紅素。
人体内的血红蛋白由四个亚基构成,分别为两个α亚基和两个β亚基,在与人体环境相似的电解质溶液中血红蛋白的四个亚基可以自动组装成α2β2的形态。
血红蛋白的每个亚基由一条肽链和一个血红素分子构成,肽链在生理条件下会盘绕折叠成球形,把血红素分子抱在里面,这条肽链盘绕成的球形结构又被称为珠蛋白。血红素分子是一个具有卟啉结构的小分子,在卟啉分子中心,由卟啉中四个吡咯环上的氮原子与一个亚铁离子配位结合,珠蛋白肽链中第8位的一个组氨酸残基中的吲哚侧链上的氮原子从卟啉分子平面的上方与亚铁离子配位结合,当血红蛋白不与氧结合的时候,有一个水分子从卟啉环下方与亚铁离子配位结合,而当血红蛋白载氧的时候,就由氧分子顶替水的位置。
血红蛋白与氧结合的过程是一个非常神奇的过程。首先一个氧分子与血红蛋白四个亚基中的一个结合,与氧结合之后的珠蛋白结构发生变化,造成整个血红蛋白结构的变化,这种变化使得第二个氧分子相比于第一个氧分子更容易寻找血红蛋白的另一个亚基结合,而它的结合会进一步促进第三个氧分子的结合,以此类推直到构成血红蛋白的四个亚基分别与四个氧分子结合。而在组织内释放氧的过程也是这样,一个氧分子的离去会刺激另一个的离去,直到完全释放所有的氧分子,这种有趣的现象称为协同效应。
血红素分子结构由于协同效应,血红蛋白与氧气的结合曲线呈S形,在特定范围内随着环境中氧含量的变化,血红蛋白与氧分子的结合率有一个剧烈变化的过程,生物体内组织中的氧浓度和肺组织中的氧浓度恰好位于这一突变的两侧,因而在肺组织,血红蛋白可以充分地与氧结合,在体内其他部分则可以充分地释放所携带的氧分子。可是当环境中的氧气含量很高或者很低的时候,血红蛋白的氧结合曲线非常平缓,氧气浓度巨大的波动也很难使血红蛋白与氧气的结合率发生显著变化,因此健康人即使呼吸纯氧,血液运载氧的能力也不会有显著的提高,从这个角度讲,对健康人而言吸氧的所产生心理暗示要远远大于其生理作用。
除了运载氧,血红蛋白还可以与二氧化碳、一氧化碳、氰离子结合,结合的方式也与氧完全一样,所不同的只是结合的牢固程度,一氧化碳、氰离子一旦和血红蛋白结合就很难离开,这就是煤气中毒和氰化物中毒的原理,遇到这种情况可以使用其他与这些物质结合能力更强的物质来解毒,比如一氧化碳中毒可以用静脉注射亚甲基蓝的方法来救治。
1) 血紅蛋白是高等生物體內負責運載氧的一種蛋白質,又名血紅素。
人體內的血紅蛋白由四個亞基構成,分別為兩個α亞基和兩個β亞基,在與人體環境相似的電解質溶液中血紅蛋白的四個亞基可以自動組裝成α2β2的形態。
血紅蛋白的每個亞基由一條肽鏈和一個血紅素分子構成,肽鏈在生理條件下會盤繞摺疊成球形,把血紅素分子抱在裡面,這條肽鏈盤繞成的球形結構又被稱為珠蛋白。血紅素分子是一個具有卟啉結構的小分子,在卟啉分子中心,由卟啉中四個吡咯環上的氮原子與一個亞鐵離子配位結合,珠蛋白肽鏈中第8位的一個組氨酸殘基中的吲哚側鏈上的氮原子從卟啉分子平面的上方與亞鐵離子配位結合,當血紅蛋白不與氧結合的時候,有一個水分子從卟啉環下方與亞鐵離子配位結合,而當血紅蛋白載氧的時候,就由氧分子頂替水的位置。
血紅蛋白與氧結合的過程是一個非常神奇的過程。首先一個氧分子與血紅蛋白四個亞基中的一個結合,與氧結合之後的珠蛋白結構發生變化,造成整個血紅蛋白結構的變化,這種變化使得第二個氧分子相比於第一個氧分子更容易尋找血紅蛋白的另一個亞基結合,而它的結合會進一步促進第三個氧分子的結合,以此類推直到構成血紅蛋白的四個亞基分別與四個氧分子結合。而在組織內釋放氧的過程也是這樣,一個氧分子的離去會刺激另一個的離去,直到完全釋放所有的氧分子,這種有趣的現象稱為協同效應。
血紅素分子結構由於協同效應,血紅蛋白與氧氣的結合曲線呈S形,在特定範圍內隨著環境中氧含量的變化,血紅蛋白與氧分子的結合率有一個劇烈變化的過程,生物體內組織中的氧濃度和肺組織中的氧濃度恰好位於這一突變的兩側,因而在肺組織,血紅蛋白可以充分地與氧結合,在體內其他部分則可以充分地釋放所攜帶的氧分子。可是當環境中的氧氣含量很高或者很低的時候,血紅蛋白的氧結合曲線非常平緩,氧氣濃度巨大的波動也很難使血紅蛋白與氧氣的結合率發生顯著變化,因此健康人即使呼吸純氧,血液運載氧的能力也不會有顯著的提高,從這個角度講,對健康人而言吸氧的所產生心理暗示要遠遠大於其生理作用。
除了運載氧,血紅蛋白還可以與二氧化碳、一氧化碳、氰離子結合,結合的方式也與氧完全一樣,所不同的只是結合的牢固程度,一氧化碳、氰離子一旦和血紅蛋白結合就很難離開,這就是煤氣中毒和氰化物中毒的原理,遇到這種情況可以使用其他與這些物質結合能力更強的物質來解毒,比如一氧化碳中毒可以用靜脈注射亞甲基藍的方法來救治。
2) 病因
身體因不能製造足夠的正鐵血紅蛋白還原酵素, 不能把正鐵血紅蛋白還原為帶氧的血紅蛋白, 或身體自行生產異常的正鐵血紅蛋白導致患者紅血球中的血紅蛋白異常,不能帶氧
病徵
呼吸困難
皮膚發紫/變藍
嚴重時可致器官缺氧受損, 致智力受影響等後遺症
成因
遺傳
過敏反應, 因進食或誤用
含過量亞硝酸鹽的食物
苯胺顏料 (Aniline dye)
含 Naphthalene 的樟腦丸
含有的氯酸鹽 (Chlorates) 的火柴或炸藥
含 Acetonitrile 的洗甲水
部份治療瘧疾, 尿道炎, 小便赤痛藥物及局部麻醉藥
治療方法
服用藥物治療
血紅蛋白是高等生物體內負責運載氧的一種蛋白質。
人體內的血紅蛋白由四個亞基構成,分別為兩個α亞基和兩個β亞基,在與人體環境相似的電解質溶液中血紅蛋白的四個亞基可以自動組裝成α2β2的形態。
血紅蛋白的每個亞基由一條肽鏈和一個血紅素分子構成,肽鏈在生理條件下會盤繞摺疊成球形,把血紅素分子抱在裡面,這條肽鏈盤繞成的球形結構又被稱為珠蛋白。血紅素分子是一個具有卟啉結構的小分子,在卟啉分子中心,由卟啉中四個吡咯環上的氮原子與一個亞鐵離子配位結合,珠蛋白肽鏈中第8位的一個組氨酸殘基中的吲哚側鏈上的氮原子從卟啉分子平面的上方與亞鐵離子配位結合,當血紅蛋白不與氧結合的時候,有一個水分子從卟啉環下方與亞鐵離子配位結合,而當血紅蛋白載氧的時候,就由氧分子頂替水的位置。
血紅蛋白與氧結合的過程是一個非常神奇的過程。首先一個氧分子與血紅蛋白四個亞基中的一個結合,與氧結合之後的珠蛋白結構發生變化,造成整個血紅蛋白結構的變化,這種變化使得第二個氧分子相比於第一個氧分子更容易尋找血紅蛋白的另一個亞基結合,而它的結合會進一步促進第三個氧分子的結合,以此類推直到構成血紅蛋白的四個亞基分別與四個氧分子結合。而在組織內釋放氧的過程也是這樣,一個氧分子的離去會刺激另一個的離去,直到完全釋放所有的氧分子,這種有趣的現象稱為協同效應。
血紅素分子結構由於協同效應,血紅蛋白與氧氣的結合曲線呈S形,在特定範圍內隨着環境中氧含量的變化,血紅蛋白與氧分子的結合率有一個劇烈變化的過程,生物體內組織中的氧濃度和肺組織中的氧濃度恰好位於這一突變的兩側,因而在肺組織,血紅蛋白可以充分地與氧結合,在體內其他部分則可以充分地釋放所攜帶的氧分子。可是當環境中的氧氣含量很高或者很低的時候,血紅蛋白的氧結合曲線非常平緩,氧氣濃度巨大的波動也很難使血紅蛋白與氧氣的結合率發生顯著變化,因此健康人即使呼吸純氧,血液運載氧的能力也不會有顯著的提高,從這個角度講,對健康人而言吸氧的所產生心理暗示要遠遠大於其生理作用。
除了運載氧,血紅蛋白還可以與二氧化碳、一氧化碳、氰離子結合,結合的方式也與氧完全一樣,所不同的只是結合的牢固程度,一氧化碳、氰離子一旦和血紅蛋白結合就很難離開,這就是煤氣中毒和氰化物中毒的原理,遇到這種情況可以使用其他與這些物質結合能力更強的物質來解毒,比如一氧化碳中毒可以用靜脈注射亞甲基藍的方法來救治。
收錄日期: 2021-04-12 23:03:01
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070117000051KK00833
檢視 Wayback Machine 備份