✔ 最佳答案
1)
As A+B+C = 180°,
A = 180° - (B+C)
sinA = sin (B+C) = sinBcosC + cosBsinC
sin²A = sin²Bcos²C + cos²Bsin²C + 2sinBcosBsinCcosC
and
cosA = -cos(B+C) = sinBsinC - cosBcosC
LHS = (k²sin²B + k²sin²C - k²sin²A)/2k²sinBsinC
= (sin²B + sin²C - sin²A)/2sinBsinC
= (sin²B+sin²C-sin²Bcos²C-cos²Bsin²C-2sinBcosBsinCcosC)/2sinBsinC
= [sin²B(1-cos²C)+sin²C(1-cos²B)-2sinBcosBsinCcosC]/2sinBsinC
= (sin²Bsin²C+sin²Csin²B-2sinBcosBsinCcosC)/2sinBsinC
= (2sin²Bsin²C-2sinBcosBsinCcosC)/2sinBsinC
= sinBsinC(sinBsinC-cosBcosC)/sinBsinC
= sinBsinC-cosBcosC
= cosA
----------------------
2a)
cos(x+β) = Acos(x-β)
cos(x-β) + cos(x+β) = cos(x-β) + Acos(x-β) = [1+A]cos(x-β)
2cosxcosβ = [1+A]cos(x-β) ---------- (1)
cos(x+β) = Acos(x-β)
cos(x-β) - cos(x+β) = cos(x-β) - Acos(x-β) = [1-A]cos(x-β)
2sinxsinβ = [1-A]cos(x-β) ------------- (2)
(2) / (1)
sinxsinβ/cosxcosβ = (1-A)/(1+A)
tanxtanβ = (1-A)/(1+A)
tan x = [(1-A)/(1+A)]*(1/tanβ)
2b)
Consider β = 30° and A = 1/2
By a, tan x = [(1-1/2)/(1+1/2)]*(1/tan 30°) = 1/sqrt 3
x = 30° or 210°