prove ((a+b)/2)^n≦(a^m+b^m)/2

2007-01-17 7:01 am
a,b>0,n is a positive integer.

回答 (1)

2007-01-17 7:57 am
✔ 最佳答案
I think your proposition should be: ((a+b)/2)^n≦(a^n+b^n)/2
Without loss of generality, assume a≦b
(This is standard A.M. >= G.M. question, but I do not use this rule)

For n=1, (a+b)/2 ≦(a+b)/2 obviously holds

Given for all 1<=k< p: ((a+b)/2)^k≦(a^k+b^k)/2 is true
(a^(p+1)+b^(p+1))/2
= (a^p+b^p)/2) (a+b) - (a^p b + b^p a)/2
= ((a^p+b^p)/2) ((a+b)/2) + ((a^p+b^p)/2) ((a+b)/2) - (a^p b + b^p a)
= ((a^p+b^p)/2) ((a+b)/2) + ((a^p - b^p)/2)((a-b)/2)
>= ((a^p+b^p)/2) ((a+b)/2)
>= ((a+b)/2)^p ((a+b)/2)

The position is proved by induction


收錄日期: 2021-04-29 18:54:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070116000051KK05197

檢視 Wayback Machine 備份