✔ 最佳答案
1.
L.H.S.
= [1 - sec(π/2 - θ) - cot(2π - θ)] / [1 + sec(3π/2 + θ) + cot(π - θ)]
1 - 1/cos(π/2 - θ) - cos(2π - θ)/sin(2π - θ)
= ---------------------------------------------------------------
1 + 1/cos(3π/2 + θ) + cos(π - θ)/cos(π - θ)
1 - 1/sinθ - cosθ/(-sinθ) sinθ
= ------------------------------------ × ------------
1 + 1/sinθ + (-cosθ)/sinθ sinθ
sinθ - 1 + cosθ sinθ + 1 + cosθ
= ------------------------ × ----------------------------
sinθ + 1 - cosθ sinθ + 1 + cosθ
(sinθ + cosθ)² - 1²
= ---------------------------
(sinθ + 1)² - cos²θ
sin²θ + 2sinθcosθ + cosθ² - 1
= ---------------------------------------------
sin²θ + 2sinθ + 1 - cos²θ
2sinθcosθ + 1 - 1
= --------------------------------
sin²θ + 2sinθ + sin²θ
2sinθcosθ
= ------------------------
2sinθ(sinθ + 1)
cosθ 1/sinθ
= -------------×------------
sinθ + 1 1/sinθ
cotθ
= ---------------
1 + cscθ
2.
sec²(π - θ)
--------------------------- = 1
3cot²(π/2 + θ) - 7
sec²(π - θ) = 3cot²(π/2 + θ) - 7
1 / [cos(π - θ)]² = 3[cos(π/2 + θ) / sin(π/2 + θ)]² - 7
1 / (-cosθ)² = 3(-sinθ / cosθ)² - 7
1 / cos²θ = 3(sin²θ / cos²θ) - 7
1 = 3sin²θ - 7cos²θ
1 = 3(1 - cos²θ) - 7cos²θ
1 = 3 - 3cos²θ - 7cos²θ
10cos²θ = 2
cos²θ = 1/5
cos = 1/√5 (rejected as π/2 < θ < π) or cos = -1/√5