✔ 最佳答案
Q7
-1同4都係f(x) = 0既roots
∴ f(x) = a[x - (-1)](x - 4)
= a(x + 1)(x - 4)
而且佢個y-intercept = -2
所以a(1)(-4) = -2
a = 1/2
Q45
regular tetrahedron即每條邊都是3 cm
但注意一點:高唔係3 cm
tetrahedron即係一個三角錐體
由於冇圖既關係
好難話你知d邊係哪一條
所以請先畫一個等邊三角形ABC(這是錐體的底)
再在三角形的中間畫上O點
設OA = OB = OC = x cm
而AB = AC = BC = 3cm
∠BOC = ∠AOB = ∠AOC = 120°
(AB)^2 = (OA)^2 + (OB)^2 - 2(OA)(OB)cos∠AOB
3^2 = x^2 + x^2 - 2x^2 cos120°
9 = x^2[2 - 2(-0.5)]
x^2 = 3
x = √3 or -√3(rejected)
(設最高點為D吧)
the height of the tetrahedron (OD)
= √[(AD)^2 - (OA)^2]
= √[(3)^2 - (√3)^2]
= √6 cm
Q48
in-centre 好似係一點同A,B及O的distance係一樣
不過唔記得有冇記錯
所以只要畫上OA bisector, OB bisector同AB bisector
三條線既相交點就係in-centre
ans is (3, 3)
2007-01-13 08:41:30 補充:
樓上的不要亂說regular tetrahedron的高並唔係佢的邊Q48 你計的是搵centroid的而且你計錯數6/3 = 3?
2007-01-13 16:33:40 補充:
下面先岩Q48in-centre 係三條angle bisertor的相交點而個相交點亦係ΔABO內接圓的圓心即OA, OB同AB都係該圓的tangent係圓與OA, OB同AB三線的交點為D,E,F
2007-01-13 16:34:45 補充:
Let (r, r) be the coordinates of centre of circle OA = OB = 6∵ OA, OB and AB are the tangent og circle∴ OD = OE = r AD = AF = 6 - r BE = BF = 6 - r AB = AF BF = 12 - 2r
2007-01-13 16:35:15 補充:
∵ (OA)^2 (OB)^2 = (AB)^2 ∴ (6)^2 (6)^2 = (12 - 2r)^2 36 36 = 144 - 48r 4r^2 4r^2 - 48r 72 = 0 r^2 - 12r 18 = 0 r = (12 ±√72)/2 = (12 ± 6√2)/2 = 6 ± 3√2 = 6 3√2 (rejected as r
2007-01-13 16:35:51 補充:
真係唔好意思由於字數有限,所以要斬開幾段
2007-01-14 19:41:04 補充:
∵ (OA)^2 (OB)^2 = (AB)^2 ∴ (6)^2 (6)^2 = (12 - 2r)^2 36 36 = 144 - 48r 4r^2 4r^2 - 48r 72 = 0 r^2 - 12r 18 = 0 r = (12 ±√72)/2 = (12 ± 6√2)/2 = 6 ± 3√2 = 6 3√2 (rejected as r
2007-01-14 19:41:50 補充:
∵ (OA)^2 (OB)^2 = (AB)^2 ∴ (6)^2 (6)^2 = (12 - 2r)^2 36 36 = 144 - 48r 4r^2 4r^2 - 48r 72 = 0 r^2 - 12r 18 = 0
2007-01-14 19:43:52 補充:
∵ (OA)^2 (OB)^2 = (AB)^2 (6)^2 (6)^2 = (12 - 2r)^2 36 36 = 144 - 48r 4r^2 4r^2 - 48r 72 = 0 r^2 - 12r 18 = 0