~~集合的基本問題~~

2007-01-13 4:11 am
本人對 P. Maths 的認識淺得很~
近來想接觸下 Set Theory,今日係第一日,已經有好多問題要請教~

1) 一個 set Z 可否是它本身的 subset?

2) 點解 empty set 是所有 set 的 subset?

3) 是否所有non-empty set 都有 subset?

4) 一個 set 可否有無窮多個 subset?

唔該~~

回答 (3)

2007-01-13 4:28 am
✔ 最佳答案
若 X 和 Y 為集合,且 X 的所有元素都是 Y 的元素,則有:

X 是 Y 的子集(或稱包含於 Y );
X ⊆ Y;
Y 是 X 的父集(或稱包含 X );
Y ⊇ X.
(1)
可以﹐因為Z的每一個完素都屬於Z
所以set Z 是它自己的子集
2)
證明:給定任意集合 A ,要證明
圖片參考:http://upload.wikimedia.org/math/d/0/9/d096fc15d57854ec89d746709b02e52e.png
沒有元素。
對有經驗的數學家們來說,推論 "
圖片參考:http://upload.wikimedia.org/math/d/0/9/d096fc15d57854ec89d746709b02e52e.png
沒有任何元素,如何使"這些元素"成為別的集合的元素? 換一種思維將有所幫助。
為了證明
圖片參考:http://upload.wikimedia.org/math/d/0/9/d096fc15d57854ec89d746709b02e52e.png
一定是 A 的子集。
Proof: Given any set A, we wish to prove that ø is a subset of A. This involves showing that all elements of ø are elements of A. But there are no elements of ø.
For the experienced mathematician, the inference " ø has no elements, so all elements of ø are elements of A" is immediate, but it may be more troublesome for the beginner. Since ø has no members at all, how can "they" be members of anything else? It may help to think of it the other way around. In order to prove that ø was not a subset of A, we would have to find an element of ø which was not also an element of A. Since there are no elements of ø, this is impossible and hence ø is indeed a subset of A.
3)
一定﹐因為對一個non-empty set 來說﹐空集和它自己都是其subset
4)
可以﹐考慮實數集R
則任一區間(a,b)都是其subset﹐好明顯有無限多subset
2007-03-12 5:39 am
I love the part showing that the empty set is a subset of any set.
Particular impressed that the author understands the difficulty of understanding the argument by beginers.
2007-01-13 8:37 am
4) 一個 set 可否有無窮多個 subset?
可以,除非這個集只有 有限個元,因為任何有限元集(設有n個元)只有 有限個子集(2^n 個)。


收錄日期: 2021-04-23 16:32:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070112000051KK03696

檢視 Wayback Machine 備份