從n的一次方加到n的五十次方是多少

2007-01-12 1:48 am
plz,緊急也

回答 (5)

2007-01-12 1:57 am
✔ 最佳答案
這是用了Geometric series

要求n+n^2+...+n^50, 一定要用G.P.公式(form 5 Maths)


Geometric series explanation:

A geometric series is one in which there is a constant ratio between each element and the one preceding it. Here is one such series.

7+14+28+56+112

The ratio here is 2. Let's try to find the sum of geometric series, in general (S is the sum, a is the first element, r is the ratio, n is the number of elements):

S=a+ar+ar^2+ar^3+...+ar^(n-1)
Sr=a^r+ar^2+ar^3+...+ar^(n-1)+ar^n
S-Sr=a-a(r^n) [subtracting the second line from the first]
S(1-r)=a(1-r^n)
S=a(1-r^n)/(1-r)

這就是公式

如題,Ans: S=n*(1-n^50)/(1-n)

Hope this is useful to you!

2007-01-11 17:59:10 補充:
其實我的答案和n( n^50- 1) / (n-1) 一樣,只不過上下乘了負1。兩個答案均可接受。

2007-01-12 13:28:52 補充:
下面唔好抄我! ={
參考: my brain
2007-01-13 4:25 am
n^1+n^2+n^3+...+n^50
=(n^51-n)/(n-1)
2007-01-12 2:17 am
這其實是用了Geometric series

要求n+n^2+...+n^50, 一定要用G.P.公式(form 5 Maths)


Geometric series explanation:

A geometric series is one in which there is a constant ratio between each element and the one preceding it. Here is one such series.

7+14+28+56+112

The ratio here is 2. Let's try to find the sum of geometric series, in general (S is the sum, a is the first element, r is the ratio, n is the number of elements):

S=a+ar+ar^2+ar^3+...+ar^(n-1)
Sr=a^r+ar^2+ar^3+...+ar^(n-1)+ar^n
S-Sr=a-a(r^n) [subtracting the second line from the first]
S(1-r)=a(1-r^n)
S=a(1-r^n)/(1-r)

這就是公式

如題,Ans: S=n*(1-n^50)/(1-n)

Hope this is useful to you!

希望你參考我的意見啦!Thank you!
參考: 補習老師
2007-01-12 1:56 am
可以利用等比級數公式~
n(n^50)
------------
n-1
=n^51/(n-1)

2007-01-11 17:57:45 補充:
n(n^50-1)------------n-1=n(n^50-1)/(n-1)

2007-01-11 18:00:32 補充:
等比級數公式是初值x(公比^項數-1)-----------------------------公比-1
2007-01-12 1:53 am
n( n^50- 1) / (n-1)


收錄日期: 2021-04-12 21:25:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070111000051KK02926

檢視 Wayback Machine 備份