✔ 最佳答案
1) 4x-2x+2-32=0
4x - 2x+2 - 32 = 0
(22)x - 22(2x) - 32 = 0
22x - 4(2x) - 32 = 0 【根據恆等式 (ab)c = abc】
(2x)2 - 4(2x) - 32 = 0
(2x - 8)(2x + 4) = 0
2x - 8 = 0 或 2x + 4 = 0
2x = 8 或 2x = -4 (捨去,因為 2x >= 0)
2x = 23
log(2x) = log(23)
xlog2 = 3log2 【根據恆等式 log(ab) = bloga】
x = 3
====================================
2) log(x-3)+log(x+5)= 2log3
log(x-3) + log(x+5) = 2log3
log[(x-3)(x+5)] = 2log3 【根據恆等式 logab = loga + logb】
log(x2 + 5x - 3x - 15) = log32 【根據恆等式 log(ab) = bloga】
log(x2 + 2x - 15) = log9
x2 + 2x - 15 = 9
x2 + 2x - 24 = 0
(x + 6)(x - 4) = 0
x + 6 = 0 或 x - 4 = 0
x = -6 或 x = 4 ..... (1)
要考慮題目中 x-3 > 0 及 x + 5 > 0 【因為 loga 只適用於 a > 0】
即 x > 3 及 x > -5
即 x > 3 ..... (2)
綜合 (1), (2), 解是 x = 4
2007-01-11 14:58:22 補充:
小小補充:指數應用的常用公式有 (^ 代表指數)(a^b)^c = a^(bc)a^(b+c) = (a^b)(a^c)a^(b-c) = (a^b)/(a^c)log 應用的常用公式有 (^ 代表指數)log(ab) = loga + logblog(a/b) = loga - logblog(a^b) = bloga
2007-01-11 17:31:08 補充:
第一條題目第四步有少少格式問題,第一項應該是 2^(2x) 而不是 2^2x