Integral Question

2007-01-10 11:25 pm
can anyone solve this for me? Integral of 1 / (x^2 +1) ^2 dx

step by step plz

回答 (1)

2007-01-10 11:33 pm
✔ 最佳答案
let x=tanθ
dx/dθ=sec^2θ
∫1 / (x^2 +1) ^2 dx
=∫sec^2θ / (tan^2θ +1) ^2 dθ
=∫sec^2θ / sec^4θ dθ
=∫1 / sec^2θ dθ
=∫cos^2θ dθ
=∫1/2 + 1/2 cos(2θ ) dθ
=(1/2)θ +1/4 sin(2θ)+C

2007-01-10 15:35:22 補充:
轉番做x就是(1/2)(arctan x) 1/4 sin(2arctan x) C

2007-01-10 15:45:47 補充:
可以更簡considerx=tanθtan(2θ)= 2tanθ/(1−tan^2θ)=2x/(1-x^2)sin(2θ)=x/(1+x^2)so∫1 / (x^2 +1) ^2 dx=(1/2)(arctan x)+ 1/2 [x/(1+x^2)] C


收錄日期: 2021-04-25 16:51:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070110000051KK01870

檢視 Wayback Machine 備份