A.math (1-secx)/(1+secx) + (1-cosx)/(1+cosx)=0

2007-01-05 5:33 am
Prove (1-secx)/(1+secx) + (1-cosx)/(1+cosx)=0

回答 (5)

2007-01-05 5:38 am
✔ 最佳答案
(1-secx)/(1+secx) + (1-cosx)/(1+cosx)

= [1 - 1/cosx] / [1 + 1/cosx] + [1 - cosx] / [1 + cosx]

= [(cosx - 1)/cosx] / [(cosx + 1)/cosx] + [1 - cosx] / [1 + cosx] 【通分母】

= [(cosx - 1)/cosx] [cosx/(cosx + 1)] + [1 - cosx] / [1 + cosx]

= (cosx - 1) / (cosx + 1) + (1 - cosx) / (cosx + 1)

= [(cosx - 1) + (1 - cosx)] / (cosx + 1)

= [cosx - 1 + 1 - cosx] / (cosx + 1)

= 0 / (cosx + 1)

= 0

Therefore (1-secx)/(1+secx) + (1-cosx)/(1+cosx)

2007-01-04 21:39:24 補充:
最後一行符號給吃掉了,應該為Therefore (1-secx)/(1+secx) + (1-cosx)/(1+cosx) = 0
2007-01-05 5:46 am
(1-secx)/(1+secx) + (1-cosx)/(1+cosx)
(1 - 1/cos x)/(1 + 1/cos x) + (1 - cos x)/(1 + cos x)
= [(cos x - 1)/cos x] / [(cos x + 1)/cos x] + (1 - cos x)/(1 + cos x)
= -(1 - cos x)/(1 + cos x) + (1 - cos x)/(1 + cos x)
= 0
2007-01-05 5:45 am
Making the same denominator,
LHS = [(1-secx+cosx-secxcosx)+(1-cosx+secx-cosxsecx)] / [(1+secx)(1+cosx)]
= (2 - 2cosxsecx) / [(1+secx)(1+cosx)]
= (2 - 2cosx/cosx) / [(1+secx)(1+cosx)]
= (2 - 2) / [(1+secx)(1+cosx)]
= 0
Since LHS = RHS,
Hence (1-secx)/(1+secx) + (1-cosx)/(1+cosx)=0.

Okay?
2007-01-05 5:39 am
(1-secx)/(1+secx) + (1-cosx)/(1+cosx)
(1 - 1/cos x)/(1 + 1/cos x) + (1 - cos x)/(1 + cos x)
= [(cos x - 1)/cos x] / [(cos x + 1)/cos x] + (1 - cos x)/(1 + cos x)
= (cos x - 1)/(cos x + 1) + (1 - cos x)/(1 + cos x)
= -(1 - cos x)/(1 + cos x) + (1 - cos x)/(1 + cos x)
= 0

2007-01-05 5:39 am
 LHS
= (1-secx)/(1+secx) + (1-cosx)/(1+cosx)
= (cosx-1)/(cosx+1) + (1-cosx)/(1+cosx)
= -(1-cosx)/(1+cosx) + (1-cosx)/(1+cosx)
= 0


收錄日期: 2021-04-12 01:37:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070104000051KK04298

檢視 Wayback Machine 備份