✔ 最佳答案
(1-secx)/(1+secx) + (1-cosx)/(1+cosx)
= [1 - 1/cosx] / [1 + 1/cosx] + [1 - cosx] / [1 + cosx]
= [(cosx - 1)/cosx] / [(cosx + 1)/cosx] + [1 - cosx] / [1 + cosx] 【通分母】
= [(cosx - 1)/cosx] [cosx/(cosx + 1)] + [1 - cosx] / [1 + cosx]
= (cosx - 1) / (cosx + 1) + (1 - cosx) / (cosx + 1)
= [(cosx - 1) + (1 - cosx)] / (cosx + 1)
= [cosx - 1 + 1 - cosx] / (cosx + 1)
= 0 / (cosx + 1)
= 0
Therefore (1-secx)/(1+secx) + (1-cosx)/(1+cosx)
2007-01-04 21:39:24 補充:
最後一行符號給吃掉了,應該為Therefore (1-secx)/(1+secx) + (1-cosx)/(1+cosx) = 0