數學問題1A

2007-01-04 7:20 am

回答 (1)

2007-01-04 8:02 am
✔ 最佳答案

圖片參考:http://space.uwants.com/attachments/2006/12/31/187499_200612312044371.jpg

(a)

(a)

AB=

〔(x)(1)+(3)(0)  (x)(1)+(3)(1)〕
〔(y)(1)+(2)(0)  (y)(1)+(2)(1)〕

==>

〔x    x+3〕
〔y    y+2〕


BA=

〔(1)(x)+(1)(y)  (1)(3)+(1)(2)〕
〔(0)(x)+(1)(y)  (0)(3)+(1)(2)〕

==>

〔x+y  5〕
〔y    2〕

由於AB=BA,所以

x = x+y ... (1)
x+3 = 5 ... (2)
y = y ... (3)
y+2 = 2 ... (4)

由 (4),

y+2 = 2
y = 0

由 (2),

x+3 = 5
x = 2

代 x = 2, y = 0 至 (1),
2 = 2+0 (正確)

代 y = 0 至 (3),
0 = 0 (正確)

所以 x = 2, y = 0

====================================================

(b)




〔2 -3 -4〕
〔1  3  7〕

==>

〔0 -9 -18〕 =R1-2R2
〔1  3   7〕


所以方程變成:

-9y = -18 ... (1)
x + 3y = 7 ... (2)

由 (1),
-9y = -18
y = 2

由 (2),
x + 3y = 7
x + 3(2) = 7 【由 (1) 結果】
x = 1

所以 x = 1, y = 2


收錄日期: 2021-04-12 19:06:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070103000051KK05487

檢視 Wayback Machine 備份