✔ 最佳答案
圖片參考:
http://space.uwants.com/attachments/2006/12/31/187499_200612312044371.jpg
(a)
(a)
AB=
〔(x)(1)+(3)(0) (x)(1)+(3)(1)〕
〔(y)(1)+(2)(0) (y)(1)+(2)(1)〕
==>
〔x x+3〕
〔y y+2〕
BA=
〔(1)(x)+(1)(y) (1)(3)+(1)(2)〕
〔(0)(x)+(1)(y) (0)(3)+(1)(2)〕
==>
〔x+y 5〕
〔y 2〕
由於AB=BA,所以
x = x+y ... (1)
x+3 = 5 ... (2)
y = y ... (3)
y+2 = 2 ... (4)
由 (4),
y+2 = 2
y = 0
由 (2),
x+3 = 5
x = 2
代 x = 2, y = 0 至 (1),
2 = 2+0 (正確)
代 y = 0 至 (3),
0 = 0 (正確)
所以 x = 2, y = 0
====================================================
(b)
設
〔2 -3 -4〕
〔1 3 7〕
==>
〔0 -9 -18〕 =R1-2R2
〔1 3 7〕
所以方程變成:
-9y = -18 ... (1)
x + 3y = 7 ... (2)
由 (1),
-9y = -18
y = 2
由 (2),
x + 3y = 7
x + 3(2) = 7 【由 (1) 結果】
x = 1
所以 x = 1, y = 2