✔ 最佳答案
(a)
cos5θ = 0
5θ = 90, 270, 450, 630, 810
θ = 18, 54, 90, 126, 162
(b)
Let z = cosθ + i sinθ
By De Moivre's Theorem, z5 = cos5θ + i sin5θ
By Binomial expension, z5 = cos5θ + 5i cos4θsinθ - 10cos3θsin2θ - 10i cos2θsin3θ + 5cosθsin4θ + isin5θ
Comparing the real part
cos5θ
= cos5θ - 10cos3θsin2θ + 5cosθsin4θ
= cos5θ - 10cos3θ(1 - cos2θ) +5cosθ(1 - cos2θ)2
= 16cos5θ - 20cos3θ + 5cosθ
(ci)
f(x) =16x4 - 20x2 + 5
Putting x=cosθ, f(x) becomes 16cos4θ - 20cos2θ + 5 = cos5θ / cosθ
f(x) = cos5θ / cosθ = 0
i.e. cos5θ = 0 and cosθ does NOT = 0
i.e. θ = 18, 54, 126, 162 for 0°≦θ≦180°
Which follows
f(x)
= 16(x - cos18°)(x - cos162°)(x - cos54°)(x - cos126°)
= 16(x - cos18°)(x + cos18°)(x - cos54°)(x + cos54°)
= 16(x2-cos218°)(x2-cos254°)
(cii)
Putting x2 = y, we have
f(x) = 16(y - cos218°)(y - cos254°) = 16y2 - 20y + 5
This implies the quadratic equation should be g(x) = 16x2 - 20x + 5
Hope the above information helps =)