Amaths 數[[ quadratic equations]]
1) y^2/3-13y^1/3+36=0
2) 2y-9y^1/2+4=0
因為唔識做份數次方所以我想要詳細既step,,唔該哂^^
回答 (2)
1) y^2/3-13y^1/3+36=0
設 x = y^1/3, 則
x^2 - 13x + 36 = 0
(x - 4)(x - 9) = 0
x = 4 或 x = 9
當x = 4,
y^1/3 = 4
y = 64
當x = 9,
y^1/3 = 9
y = 729
所以 y = 64 或 y = 729
_________________________________________________________________
2) 2y-9y^1/2+4=0
設 x = y^1/2, 則
2x^2 - 9x + 4 = 0
(2x - 1)(x - 4) = 0
x = 1/2 或 x = 4
當x = 1/2,
y^1/2 = 1/2
y = 1/4
當x = 4,
y^1/2 = 4
y = 16
所以 y = 1/4 或 y = 16
2007-01-01 12:07:11 補充:
驗算:1.(64)^2/3 - 13(64)^1/3 36 = 16 - 52 36 = 0(729)^2/3 - 13(729)^1/3 36 = 81 - 117 36 = 02.2(1/4) - 9(1/4)^1/2 4 = 0.5 - 4.5 4 = 02(16) - 9(16)^1/2 4 = 32 - 36 4 = 0
1) y^2/3-13y^1/3+36=0
Let x by y^(1/3), then the equation becomes:
x^2-13x+36=0
(x - 9)(x - 4) = 0
x = 9 or x = 4
y^(1/3) = 9 or y^(1/3) = 4
y = 9^3 = 729 or y = 4^3 = 64
2) 2y-9y^1/2+4=0
Let x by y^(1/2), then the equation becomes:
2x^2-9x+4=0
(2x - 1)(x - 4) = 0
x = 1/2 or x = 4
y = (1/2)^2 = 1/4 or y = 4^2 = 16
關鍵係 Let something so that 條 equation 可以變成 quadratic equation.
參考: My Maths knowledge
收錄日期: 2021-04-12 22:37:47
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20070101000051KK01173
檢視 Wayback Machine 備份