function

2006-12-31 7:49 pm
consider a quadratic function f(x) = x^2 - 4x +1. Suppose f(a) = f(b) = 0,where a =/= b.

a) Evalute a^2 - 4a +1 and b^2 - 4b +1

b) Hence find the value of a+b

c) Find f(a+b)

回答 (2)

2006-12-31 7:54 pm
✔ 最佳答案
f(x) = x^2 - 4x +1, f(a) = f(b) = 0
a) a² - 4a + 1
a² - 4a + 1 = f(a) = 0
b² - 4b + 1 = f(b) = 0

b) a, b are the roots of the equation f(x) = x² - 4x + 1 = 0
a + b = 4

c) f(a+b) = f(4) = 4² - 4*4 + 1
= 1.




2006-12-31 11:57:29 補充:
For part (b), we may evaluate by the steps below.a² - 4a 1 = b² - 4b 1 = 0a² - 4a = b² - 4ba² - b² = 4(a-b)(a b)(a-b) = 4(a-b)a b = 4, since a =/= b, a-b =/= 0
2006-12-31 7:58 pm
a

f(a)= a^2 - 4a +1=0

F(b)=b^2 - 4b +1=0

b)

as a, b are roots of f(x) (when we put a,b into f(x), f(x) touches x-axis)
so sum of roots is 1/1=1
so a+b=1


C)
f(1)=1^2-4*1+1=-2

2006-12-31 11:59:25 補充:
比你快一步/__\


收錄日期: 2021-04-25 21:14:24
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061231000051KK01248

檢視 Wayback Machine 備份