Factorization

2006-12-28 11:36 pm
1. 2 ( p + q )^2 - 6 ( p + q )^3

2. ( a - 2b)^2 + ( 2a - b )( 2b - a )

3. 2 ( x + y - 1 )^2 - 4 ( 1 - x - y)

4. 18 ( 2a - 3b )^2 - 6 ( 3b - 2a)

回答 (2)

2006-12-28 11:42 pm
✔ 最佳答案
1. 2 ( p + q )² - 6 ( p + q )³
2(p+q)² - 6(p+q)³
= (p+q)²[2 - 6(p+q)]
= 2(p+q)²[1 - 3(p+q)]
= 2(p+q)²(1-3p-3q)
============================================
2. ( a - 2b)² + ( 2a - b )( 2b - a )
(a-2b)² + (2a-b)(2b-a)
[-(a-2b)]² + (2a-b)(2b-a)
= (2b-a)² + (2a-b)(2b-a)
= (2b-a)[(2b-a) + (2a-b)]
= (2b-a)(2b-a+2a-b)
= (2b-a)(a+b)
============================================
3. 2 ( x + y - 1 )² - 4 ( 1 - x - y)
2(x+y-1)² - 4(1-x-y)
= 2(x+y-1)² + 4(x+y-1)
= 2(x+y-1)[(x+y-1) + 2]
= 2(x+y-1)(x+y+1)
============================================
4. 18 ( 2a - 3b )² - 6 ( 3b - 2a)
18(2a-3b)² - 6(3b-2a)
= 6[3(2a-3b)² - (3b-2a)]
= 6[3(2a-3b)² + (2a-3b)]
= 6(2a-3b)[3(2a-3b)+1]
= 6(2a-3b)(6a-9b+1)


2007-01-02 10:28:19 補充:
下面的?不用照 copy 吧 -_-
2006-12-29 11:16 pm
2(p+q)² - 6(p+q)³


= (p+q)² [ 2 - 6(p+q) ]


= (p+q)² × 2[ 1 - 3(p+q) ]


= 2(p+q)² [1 - 3(p+q) ]


= 2(p+q)²(1-3p-3q)




////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////


(a-2b)² + (2a-b)(2b-a)


= [-(a-2b)]² + (2a-b)(2b-a)


= (2b-a)² + (2a-b)(2b-a)


= (2b-a)[(2b-a) + (2a-b)]


= (2b-a)(2b-a+2a-b)


= (2b-a)(2b-b+2a-a)


= (2b-a)(b+a)




////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////


2(x+y-1)² - 4(1-x-y)


= 2(x+y-1)² + 4(x+y-1)


= 2(x+y-1)[(x+y-1) + 2]


= 2(x+y-1)(x+y+1)




////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////


18(2a-3b)² - 6(3b-2a)


= 6[3(2a-3b)² - (3b-2a)]


= 6[3(2a-3b)² + (2a-3b)]


= 6(2a-3b)[3(2a-3b)+1]


= 6(2a-3b)(6a-9b+1)


////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////


收錄日期: 2021-04-23 18:51:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061228000051KK01178

檢視 Wayback Machine 備份