Maths的

2006-12-27 7:47 am
Prove tan(180°+θ)-tan(270°+θ)=tan(270°-θ)/sin*( (270°-θ)

*=二次方

ps:加解釋
月詳盡月好

回答 (1)

2006-12-27 7:54 am
✔ 最佳答案
LHS
= tan(180°+θ)-tan(270°+θ)
= tanθ+cotθ
=sinθ/cosθ+cosθ/sinθ
=1/sinθcosθ
RHS
=tan(270°-θ)/sin*( (270°-θ)
=cotθ/(-cosθ)(-cosθ)
=1/sinθcosθ
LHS=RHS
tan(180°+θ)-tan(270°+θ)=tan(270°-θ)/sin*( (270°-θ)



2006-12-26 23:55:41 補充:
你要看番附加數學書三角學0的formula先做到


收錄日期: 2021-04-12 22:44:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061226000051KK05268

檢視 Wayback Machine 備份