✔ 最佳答案
利用隸美弗定理 (De Moivre's Theorem) 和複數極式 (Polar Form of complex number).
先將 i 寫成:
i = cos(pi/2) + isin (pi/2)
Then
√i = √[cos(pi/2) + isin (pi/2)]
= [cos(pi/2) + isin (pi/2)]^(1/2)
= cos(pi/4) + isin (pi/4) (De Moivre's Theorem)
= (1/√2) + (i/√2)
= (1/√2) (1+i)