歸約公式(只需做c部分

2006-12-20 4:25 am
1a 證明d/dx(x^n cosx-nx^n-1 sinx)=-x^n sinx-n(n-1)x^n-2 sinx
b)設Jn=∫x^n sinxdx
證明Jn=-x^n cosx+nx^n-1 sinx-n(n-1)Jn-2
c)由此求∫x^4sinx dx
(c)
答案係-x^4 cosx+4x^3 sinx+12x^2 cosx-24xsinx-24cosx+C

回答 (1)

2006-12-20 5:09 am
✔ 最佳答案
c.∫x^4sinx dx
=J4
=-x^4cosx+4x^3sinx-12J2
=-x^4cosx+4x^3sinx-12(-x^2cosx+2xsinx-2J0)
=-x^4cosx+4x^3+12x^2cosx-24xsinx+24∫x^0 sinxdx
=x^4cosx+4x^3+12x^2cosx-24xsinx-24cosx+C
a. &b.
a.d/dx(x^n cosx-nx^n-1 sinx)
=nx^n-1cos-x^nsinx-[n(n-1)x^n-2sinx+nx^n-1cosx]
=nx^n-1cosx-x^nsinx-n(n-1)x^n-2sinx-nx^n-1cosx
=-x^nsinx-n(n-1)x^n-2sinx
b.d/dx(x^n cosx-nx^n-1 sinx)=-x^n sinx-n(n-1)x^n-2 sinx
x^ncosx-nx^n-1sinx=∫(-x^n sinx-n(n-1)x^n-2 sinx)dx
x^ncosx-nx^n-1sinx=-Jn-n(n-1)Jn-2
Jn=-x^ncosx+nx^n-1sinx-n(n-1)Jn-2


收錄日期: 2021-04-13 16:19:56
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061219000051KK03444

檢視 Wayback Machine 備份