✔ 最佳答案
Sum [(aij)(x^i)(y^j)] = 0 (i = 0, 1, ...n; j = 0, 1, ... n)
Take a general term,
(aij)(x^i)(y^j)
d[(aij)(x^i)(y^j)]/dx = aij(ix^(i-1)y^j + jx^n*y^(j-1)dy/dx)
Take the derivative w.r.t. x on both sides.
Sum [aij(ix^(i-1)y^j + aij*jx^i*y^(j-1)dy/dx)] = 0
dy/dx * Sum [aij*jx^i*y^(j-1)] = - Sum [aij(ix^(i-1)y^j]
dy/dx = - Sum [aij(ix^(i-1)y^j]/Sum [aij*jx^i*y^(j-1)]
= - {(a10)(x^0)(y^0) + (a11)(x^0)(y^1) + (a12)(x^0)(y^2)... + (a1n)(x^0)(y^n) +
2[(a20)(x^1)(y^0) + (a21)(x^1)(y^1) + (a22)(x^1)(y^2)... + (a2n)(x^1)(y^n)] + ... +
n[(an0)(x^(n-1))(y^0) + (an1)(x^(n-1))(y^1) + (an2)(x^(n-1))(y^2) + ... + (ann)(x^(n-1))(y^n)} /
{(a01)(x^0)(y^0) + 2(a02)(x^0)(y^1) + ... + (n)(a0n)(x^0)(y^(n-1)) +
(a11)(x^1)(y^0) + 2(a12)(x^1)(y^1) + ... + (n)(a1n)(x^0)(y^(n-1)) + ... +
(an1)(x^n)(y^0) + 2(an2)(x^n)(y^1) + ... + (n)(ann)(x^n)(y^(n-1))}