A. math---trigonometry : comound angles

2006-12-15 3:28 am
Prove :

sin x + sin 2x
------------------------ = tan x
1+ cos x + cos 2x

回答 (4)

2006-12-15 3:47 am
✔ 最佳答案
sin x + sin 2x
------------------------
1+ cos x + cos 2x

sinx + 2sin x cos x
= -----------------------------
cos x + 2cos^2(x)

sinx(1+2cos x)
= --------------------------
cos x(1+ 2cos x)
= tan x
2006-12-15 3:46 am
sin x + sin 2x = sin x + 2sin x cos x = sin x ( 1 +2 cos x)
1+ cos x + cos 2x =1+ cos x + 2 cos^2 x -1 =cos x + 2cos^2 x = cos x (1+cos x)
Hence,
sin x + sin 2x
------------------------ = sin x / cos x = tan x
1+ cos x + cos 2x

2006-12-14 19:47:30 補充:
SORRY.......1 =cos x 2cos^2 x = cos x (1 2 cos x)
2006-12-15 3:43 am
L.H.S=(sin x + sin 2x)/(1 + cos x + cos 2x)
=(sin x + 2 sin x cos x)/[1 + cos x + (2 cos² x -1)]
=[sin x (2 cos x)]/[cos x (2cos x)]
=sin x / cos x
=tan x
=R.H.S
2006-12-15 3:43 am
(sinx+sin2x)/(1+cosx+cos2x)

=(sinx+2sinxcosx)/(cosx+2cos^2x)

=[2sinx(1+cosx)]/[2cosx(1+cosx)]

=tanx .

2006-12-14 19:52:24 補充:
修正:(sinx+sin2x)/(1+cosx+cos2x)=(sinx+2sinxcosx)/(cosx+2cos^2x)=[sinx(1+2cosx)]/[cosx(1+2cosx)]=tanx .


收錄日期: 2021-04-12 20:14:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061214000051KK03297

檢視 Wayback Machine 備份