✔ 最佳答案
Hypothesis testing is the use of statistics to determine the probability that a given hypothesis is true. (For example, in the exam, to test whether the mean score of boys and girls are equal or not) The usual process of hypothesis testing consists of four steps.
1. Formulate the null hypothesis
圖片參考:
http://mathworld.wolfram.com/images/equations/HypothesisTesting/inline2.gif
(commonly, that the observations show a real effect combined with a component of chance variation).
2. Identify a test statistic that can be used to assess the truth of the null hypothesis.
3. Compute the P-value, which is the probability that a test statistic at least as significant as the one observed would be obtained assuming that the null hypothesis were true. The smaller the
圖片參考:
http://mathworld.wolfram.com/images/equations/HypothesisTesting/inline3.gif
-value, the stronger the evidence against the null hypothesis.
4. Compare the
圖片參考:
http://mathworld.wolfram.com/images/equations/HypothesisTesting/inline6.gif
, that the observed effect is statistically significant, the null hypothesis is ruled out, and the alternative hypothesis is valid.
Common test statistics
Name
Formula
Assumptions
One-sample z-test
圖片參考:
http://upload.wikimedia.org/math/c/a/8/ca876ecdd5964fe6afc557fa79557630.png
(Normal distribution or n ≥ 30) and σ known
Two-sample z-test
圖片參考:
http://upload.wikimedia.org/math/5/3/d/53d9cfd60853324980381ac8dbd09f38.png
Normal distribution and independent observations and (σ₁ AND σ₂ known)
One-sample t-test
圖片參考:
http://upload.wikimedia.org/math/c/6/5/c659df151a26b32aa4e2be12f753b774.png
df = n − 1
(Normal population or n ≥ 30) and σ unknown
Two-sample pooled t-test
圖片參考:
http://upload.wikimedia.org/math/e/8/f/e8f7dba8e6f56fb75d57e8952cbc7a4a.png
圖片參考:
http://upload.wikimedia.org/math/8/d/8/8d89b806b21ed48c03f54f0849fccb1a.png
df = n1 + n2 − 2
(Normal populations or n₁ + n₂ > 40) and independent observations and σ₁ = σ₂ and (σ₁ and σ₂ unknown)
Two-sample unpooled t-test
圖片參考:
http://upload.wikimedia.org/math/2/d/6/2d6b9fb0895e4ced2269ce1462d8cacb.png
圖片參考:
http://upload.wikimedia.org/math/4/e/6/4e6486f3b9934d9c8301d58ccdde1dcb.png
圖片參考:
http://upload.wikimedia.org/math/4/6/9/469a87903edc69cf2889f5ac6922277c.png
or df = min{n1,n2}
(Normal populations or n₁ + n₂ > 40) and independent observations and σ₁ ≠ σ₂ and (σ₁ and σ₂ unknown)
Paired t-test
圖片參考:
http://upload.wikimedia.org/math/c/d/4/cd4d7afafc0c609749f0a2e0f065d559.png
df = n − 1
(Normal population of differences or n > 30) and σ unknown
One-proportion z-test
圖片參考:
http://upload.wikimedia.org/math/2/0/b/20bd40213fb213e51cc8e15633cf7e2e.png
np > 10 and n(1 − p) > 10
Two-proportion z-test, equal variances
圖片參考:
http://upload.wikimedia.org/math/f/7/e/f7e0ee9c48e6d371a7e44b68d0dde9ba.png
圖片參考:
http://upload.wikimedia.org/math/b/6/b/b6b322a96b890d51c23efb952a74d1a7.png
n₁p₁ > 5 AND n₁(1 − p₁) > 5 and n₂p₂ > 5 and n₂(1 − p₂) > 5 and independent observations
Two-proportion z-test, unequal variances
圖片參考:
http://upload.wikimedia.org/math/5/b/a/5ba0665f67034488b35cda1127a9e23a.png
n₁p₁ > 5 and n₁(1 − p₁) > 5 and n₂p₂ > 5 and n₂(1 − p₂) > 5 and independent observations