✔ 最佳答案
(1)
LHS
= (sec x - cos x)(1 + cot x + tan x)
= (1/cos x - cos x)(1 + cos x/sin x + sin x/cos x)
= (1 - cos² x)/cos x * (sin x cos x + cos² x + sin² x)/(sin x cos x)
= sin² x (sin x cos x + 1)/(sin x cos² x)
= sin x (sin x cos x + 1)/cos² x
RHS
= sec² x/csc x + sec x/csc² x
= (1/cos² x)/(1/sin x) + (1/cos x)/(1/sin² x)
= sin x/cos² x + sin² x/cos x
= (sin x + sin²x cos x)/cos² x
= sin x (1 + sin x cos x)/cos² x
So, LHS = RHS.
(2)
LHS
= [sec(-x) + sin(-x - 90°)]/[csc(540° - x) - cos(270° + x)]
= [1/cos(-x) - sin(90° + x)]/[1/sin(540° - x) - sin x]
= [1/cos x - cos x]/[1/sin(180° - x) - sin x]
= [(1 - cos² x)/cos x]/[1/sin x - sin x]
= [sin² x/cos x]/[(1 - sin² x)/sin x]
= [sin² x/cos x]/[cos² x/sin x]
= sin³ x/cos³ x
= tan³ x
= RHS
(3)
sec x (sec x - tan x) = x
1/cos x (1/cos x - sin x/cos x) = x
1/cos x * (1 - sin x)/cos x = x
(1 - sin x)/cos² x = x
(1 - sin x)/(1 - sin² x) = x
(1 - sin x)/[(1 - sin x)(1 + sin x)] = x
1/(1 + sin x) = x
1 = x + x sin x
1 - x = x sin x
sin x = (1 - x)/x
(4)
Since sin² x + sin x - 1 = 0
So, sin² x = 1 - sin x -------------(*)
(a)
cos^4 x + cos² x - 1
= (1 - sin² x)² + (1 - sin² x) - 1
= 1 - 2 sin² x + sin^4 x - sin² x
= 1 - 3 sin² x + (sin² x)²
= 1 - 3 (1 - sin x) + (1 - sin x)²【由(*)】
= 1 - 3 + 3 sin x + (1 - 2 sin x + sin² x)
= -1 + sin x + sin² x
= -1 + sin x + (1 - sin x)【By (*)】
= 0
(b)
cos^8 x + cos^6 x + cos² x - 1
= cos^8 x + cos^6 x - cos^4 x + cos^4 x + cos² x - 1【補上cos^4 x項】
= cos^4 x (cos^4 x + cos² x - 1) + (cos^4 x + cos² x - 1)
= cos^4 x (0) + (0)【由(a)】
= 0
(5)
LHS
= (cos² x - sin x cos x + tan x)/(cos² x + sin x cos x - tan x)
= (cos² x - sin x cos x + sin x/cos x)/(cos² x + sin x cos x - sin x/cos x)
= [(cos³ x - sin x cos² x + sin x)/cos x]/[(cos³ x + sin x cos² x - sin x)/cos x]
= (cos³ x - sin x cos² x + sin x)/(cos³ x + sin x cos² x - sin x)
= (1 - tan x + tan x/cos² x)/(1 + tan x - tan x/cos² x)【分子分母除以cos³ x】
= (1 - tan x + tan x sec² x)/(1 + tan x - tan x sec² x)
= [1 - tan x + tan x (1 + tan² x)]/[1 + tan x - tan x (1 + tan² x)]
= [1 + tan³ x]/[1 - tan³ x]
= RHS
(6)
Product of roots = cos x csc x = cos x/sin x = 1/tan x
On the other hand, product of roots = (-1)/3 = -1/3
So, 1/tan x = -1/3
tan x = -3
Since π/2 < x < π, x-coordinate = -1, y-coordinate = 3
sin x = 3/√(3² + 1²) = 3/√10
cos x = -1/√10
Sum of roots = cos x + csc x = cos x + 1/sin x
On the other hand, sum of roots = (-h)/3 = -h/3
So, -h/3 = cos x + 1/sin x
h = -3 [-1/√10 + 1/(3/√10)]
h = 3/√10 + (-3) √10/3
h = 3/√10 - √10
h = 3√10 /10 - √10
h = (3√10 - 10√10)/10
h = -7√10 /10
(7)
Sum of roots = sin x + cos x = -(-4)/k = 4/k --------------(#)
Since sin x and cos x are roots of kx² - 4x + 3 = 0
k sin² x - 4 sin x + 3 = 0 ----------(1)
k cos² x - 4 cos x + 3 = 0 ----------(2)
(1) + (2):
k (sin² x + cos² x) - 4 (sin x + cos x) + 6 = 0
k - 4 (4/k) + 6 = 0
k - 16/k + 6 = 0
k² - 16 + 6k = 0
k² + 6k - 16 = 0
(k + 8)(k - 2) = 0
k = -8 or k = 2
Hope it helps! ^^
2006-12-11 00:44:04 補充:
做三角問題最常用的方法是將tan,sec,csc,cot變為sin,cos再作簡化,因為sin,cos有更多公式可用。