✔ 最佳答案
1a
Completing square,將 -4 除 2 再 Square 得 4,
所以將 x*x - 4x + 7 寫成 x*x - 4x + 4 + 3 ,於是 p = -2, q = 3 了。
1b
叫得你寫做 Square 加一個數,就係想你知 Square 最小都一定係 0
所以,(x+2)^2 + 3 ,最小都只可以當舊 Square 是 0,即最小值為 3
1c
首先注意 (x+2)^2 + 3 一定是正數,所以 1 / (x+2)^2 + 3 都一定是正數
題目那東西最小是 3 ,而那東西是 Square + 3 ,所以個 Square 任大都可以
x^2 - 4x + 7 最小,代表 1 / (x^2 - 4x + 7) 最大,所以最大值為 1/3
x^2 - 4x + 7 最大,代表 1 / (x^2 - 4x + 7) 最小。
但是 x^2 - 4x + 7 任大都可以,1 / (x^2 - 4x + 7) 就任細了。但是卻不計 0~
因為你點代個 x,1 / (x^2 - 4x + 7) 都係正數,永遠不到零
所以答案是 0 至 1/3,包 1/3 但不包 0。
2a
a + B 就是 Root Sum,就是 -p
aB 就是 Root Product,就是 q
所以你可以將 a^2 + B^2 寫成:
a^2 + B^2
= a^2 + B^2 + 2aB - 2aB <---- 攝個 Term 落去
= (a+B)^2 - 2aB <----- 用左公式
咁就可以代番晒o的 a+B、aB
= p^2 - 2q
同樣,你可以將 (a-B),這個不是 Root Sum,而是 Root Difference 的東西寫成...
(a - B)
= [ (a - B)^2 ] ^ (1/2) <------------ 鑑粗 Square 再開番方
= [ a^2 - 2aB + B^2 ] ^ (1/2)
= [ a^2 + 2aB + B^2 - 4aB ] ^ (1/2) <----------- 我們想要 (a+B) 樣而不是 (a-B) 樣
= [ (a + B) ^2 - 4aB ] ^ (1/2)
= [ p^2 - 4q ] ^ (1/2)
基於「想要 (a+B) 樣而不是 (a-B) 樣」的精神 (因為得 a+B 先有得直代 -p ),
a^2 + B^2 = ( a + B)^2 - 2aB --------------- (1)
(a-B)^2 = ( a + B )^2 - 4aB -------------- (2)
這東西最好記實... 包你話好使好用
以上兩點都好 Standard,一定要記熟
返回題目,
a^3 + B^3 = (a + B) (a^2 - aB + B^2)
前面個 (a+B) 就 OK 了 (可直接代 -p),後面的點算?
用上面的 (1) 招,代到變左
(a + B) [ (a+B)^2 - 2aB - aB ]
= (a+B) [ (a+B)^2 - 3aB] = (-p) ( p^2 - 3q )
之後,試o下將 (a-B^2) (B-a^2) 硬爆...
aB + a^2 B^2 - a^3 - B^3
前面兩個 Term 就代 q 和 q^2 (簡單),
後面的 -a^3 -B^3 就只是上面答案的負數姐... 代番又 OK
2b
佢話兩個 Roots,是但一個是另一個的 Square。
當住兩個 Root 叫 a B 先啦
咁唔知邊個係邊個的 Square 嘛,咁咪要兩個 Case 都睇晒。
一個 Case 就是 a^2 = B ,一個 Case 就是 a = B^2。
要是但一條 Equation 成立,所以...
a^2 = B or a = B^2
之後,好似 Quadratic Equation 倒轉頭做...
a^2 - B = 0 or a - B^2 = 0
可以將兩條黐埋...
(a^2 - B) (a - B^2) = 0
哇,屈機!點解個左手邊同 2a 第二個答案一樣的??
就代番落去,咁就做完!收工!
---------------
最重要的是,識得上述的 (1) (2) 招,
咁對住二次方就無敵,三次方都可以用
A^3 + B^3 = (A+B) (A^2 - AB + B^2)
A^3 - B^3 = (A-B) (A^2 + AB + B^2)
這兩招,將三次方變成二次方,咁又無敵了。