三角函數的證明

2006-12-09 8:11 am
證明sin(750∘+x)tan(765∘+x)tan(225∘-x)sec
(x-60∘)=1

其中x是角度

回答 (2)

2006-12-09 8:25 am
✔ 最佳答案
LHS
= sin(750°+x) tan(765°+x) tan(225°-x) sec(x-60°)
= sin(720°+30°+x) tan(720°+45°+x) tan(225°-x) 1/cos(x-60°)
= sin(30°+x) tan(45°+x) tan(225°-x) 1/cos(x-60°)【720°=轉左兩個圈,即係同0°一樣】
= sin(30°+x) tan(45°+x) tan(180°+45°-x) 1/cos(x-60°)
= sin(30°+x) tan(45°+x) tan(45°-x) 1/cos(x-60°)【tan(180°+θ) = tanθ】
= cos(90° - (30°+x)) 1/tan(90° - (45°+x)) * tan(45°-x) 1/cos(x-60°)【tan(90°-θ)=1/tanθ 及 cos(90°-θ)=1/sinθ】
= cos(60°-x) 1/tan(45°-x) * tan(45°-x) 1/cos(x-60°)
= 1【分子分母約簡】
= RHS


希望幫倒你!^^

2006-12-10 22:52:17 補充:
As far as I know, I didn't see any mistake. Please mail me for the mistake I made. Thank you.
參考: 我自己
2006-12-09 8:55 am
LHS = sin(750+x)tan(765+x)tan(225-x)sec(x-60)
= sin(30+x)tan(45+x)tan[-(135+x)] / cos(x-60)
= cos[90-(30+x)tan(45+x)tan[-(135+x)] / cos(60-x) <-- 考慮 cos(x-60) = cos[360-(60-x)]
= tan(45+x)[-tan(135+x)]<-- 考慮tan(-x) = -tan(x)
= tan(45+x)tan[180-(135+x)] <-- 考慮tan(180-x) = -tanx
= tan(45+x)tan(45-x)
= (tan45+tanx)(tan45-tanx) / (1-tan45tanx)(1+tan45tanx) <-- tan45 = 1
= (1+tanx)(1-tanx) / (1-tanx)(1+tanx)
= 1
=RHS
做完~
參考: 自己


收錄日期: 2021-05-03 05:00:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061209000051KK00061

檢視 Wayback Machine 備份