A math (absolute value)

2006-12-07 9:27 pm
Solve the following equation.
|3x-1| + |3x+1| =2

回答 (3)

2006-12-08 12:42 am
✔ 最佳答案
Case 1: x < -1/3
Then |3x-1|=-(3x-1), and |3x+1|=-(3x+1).
-(3x-1)-(3x+1)=2
-6x=2
x=-1/3 (rejected since x must be < -1/3)

Case 2: -1/3 <= x < 1/3
Then |3x-1|=-(3x-1), and |3x+1|=3x+1.
-(3x-1)+3x+1=2
2=2
therefore, there is infinite number of solutions in this case.

Case 3: x>=-1/3
Then |3x-1|=3x-1, and |3x+1|=3x+1.
3x-1+3x+1=2
6x=2
x=1/3

From the above cases, -1/3 <= x <= 1/3.

2006-12-07 21:43:14 補充:
To 樓上既 Amy,1-3x 3X 1=2, not 0 !所以2=2,i.e. 無限個solution (when -1/3

2006-12-07 21:44:31 補充:
仲有,when x
2006-12-07 10:21 pm
要分case 答ge lee 題
|3x-1| + |3x+1| =2
when x>1/3
3x-1 + 3x+1 =2
x=1/3
when -1/3< x <1/3
1-3x + 3x+1= 2
0= 2
no sol
when x< -1/3
1-3x - (3x+1) = 2
x = -1/3
so x = 1/3 or -1/3
2006-12-07 9:53 pm
(3x-1)+(3x+1)=2
3x-1+3x+1=2
6x=2
x=2/6
x=1/3


收錄日期: 2021-04-12 18:30:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061207000051KK01426

檢視 Wayback Machine 備份