about Stat.

2006-12-07 12:11 pm
suppose a room contains n people

a. what is the probability that no one has the same birthday as you?
b. approximately how large must n be for the probability to be 0.5 that someone shares your birthday?

回答 (2)

2006-12-07 6:46 pm
✔ 最佳答案
a. 想像將n點分別隨機放入 365 日,然後要不重覆~
第一點成功的機率是 365 / 365 = 1
第二點成功的機率是 364 / 365 (第二個人不可和第一個人重覆生日嘛)
第三點成功的機率是 363 / 365 (第三個人不可和前面兩人重覆生日)
...
第 n 點成功的機率是 (365 - n + 1) / 365。
Part a 的答案:將以上機率乘起來就是了~

b. 如果你將 a. 的答案當成 (1-0.5) = 0.5 ,你會發現 n 的值會影響方程的 Degree,所以不可以用一般方法計... 唯有試不同的 n 了。
當 n = 15,Part a 的概率就是約 0.747,
當 n = 25,Part a 的概率就是約 0.431,
所以答案就是 15 和 25 之間了~
那麼 (例如) 如 n = 22 則概率 > 0.5,n = 23 則概率 < 0.5 ,答案是 22 還是 23?
題目其實希望有同生日的概率「最少」有 0.5,但 Part a 計的是沒有同生日的概率,所以我們希望 Part a 的概率小於,而不是大於 0.5。所以 n = 23。

真正的 n 就由你自己試了~
2006-12-08 8:56 am
a)
The pobability of my birthday is 29thFeb = Pa = 1/ (365x4 +1) = 1/1461
The pobability of my birthday is not 29thFeb = Pb = 365x4/ (365x4 +1) = 1460/1461
The probability that no one (of N people) same as mine
= Pb x {(1460 -4)/1461 }^N + Pa x (Pb)^N
=1460 x{ (1456)^N + (1460)^N } /(1461)^(N+1)

b)
Let Pc =1460 x{ (1456)^N + (1460)^N } /(1461)^(N+1) , then
Pc < 2 x( 1460/1461)^(N+1) and
Pc > 2 x (1460/1461) x (1456/1461)^N
Take 0.5 = 1 -Pc and hence Pc=0.5
Solving, we have
N < 2024
N > 404
Try N=(2024+404)/2 =1214 , we have Pc = 0.45 appx.
and continue by bisection method to find the maxium Pc such that Pc <0.5, we have N =1085


收錄日期: 2021-04-19 21:00:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061207000051KK00427

檢視 Wayback Machine 備份