✔ 最佳答案
1.
since (nCm)(2^m) = (nCm)(1+1)^m
=(nCm)(mC0+mC1+mC2+mC3+.....+mCm)
=(nCm)(mC0) + (nCm)(mC1) + (nCm)(mC2)+.....+(nCm)(mCm)------(1)
because
(nCm)(mCr) = (n!/m!(n-m)!)(m!/r!(m-r)!)
=n!/(n-m)!(m-r)!r!
=(n!/r!)(1/(n-m)!(m-r)!)
=(n!/(n-r)!r!)( (n-r)!/(m-r)!(n-m)!)
=(nCr)( (n-r)!/(m-r)!(n-r -(m-r))! = (nCr)(n-rCm-r)
therefore (1) will become
(nC0)(nCm) + (nC1)(n-1Cm-1) + (nC2)(n-2Cm-2)+.....+(nCm)(n-mC0) = L.H.S
2) (1-x)^n/x=1/x - nC1 + nC2x^1 - nC3x^2+.........+(-1)^n nCnx^n-1
1/x - (1-x)^n/x = nC1 -nC2x^1 + nC3x^2+.........+(-1)^n-1(nCnx^n-1)
by applying 1-y^n = (1-y)(1+y+y^2+....y^n-1)
we have
(1+(1-x) + (1-x)^2+....+(1-x)^n-1) = nC1 -nC2x^1 + .........+(-1)^n-1(nCnx^n-1)
integrate both sides from x=1 to 0
(x -(1-x)^2/2 -(1-x)^3/3 -....-(1-x)^n/n =nC1x -nC2x^2/2+.....
.....+(-1)^n-1 nCnx^n/n
from x=1 to 0 we have
1 - (-1/2 -1/3 -...-1/n) = nC1-nC2/2+.....+(-1)^n-1(nCn/n)
1+1/2+1/3+....+1/n = nC1-nC2/2+......+(-1)^n-1(nCn/n)