{F4 A.Math} trigonometry

2006-12-07 3:47 am
Find A,
6 tan2A – 4 sin2A = 1

回答 (2)

2006-12-07 4:02 am
✔ 最佳答案
6 tan²A – 4 sin²A = 1
6 sin²A / cos²A - 4 sin²A = 1
6 sin²A - 4 sin²A cos²A = cos²A
6 sin²A - 4 sin²A (1 - sin²A) = 1 - sin²A
6 sin²A - 4 sin²A + 4 sin^4 A = 1 - sin²A
4 sin^4 A + 3 sin²A - 1 = 0
4 (sin²A)² + 3 sin² A - 1 = 0
(4 sin²A - 1)(sin²A + 1) = 0
4 sin²A = 1 or sin²A = -1 (Rejected)
sin²A = 1/4
sin A = 1/2 or sin A = -1/2
A = nπ + (-1)^n π/6 or A = nπ - (-1)^n π/6【If you want general solution】
A = π/6 or 5π/6 or A = 7π/6 or 11π/6【If you want 0≦A≦2π】


Hope it helps! ^^

2006-12-06 20:05:11 補充:
The key is to make tan, sec, csc to the basic form of sin and cos (tan A = sin A/cos A, sec A = 1/cosA, csc A = 1/sinA).Then use properties of sin and cos (sin²A cos²A = 1) to make it look like a polynomial and use the ways to solve a polynomial to solve the equation.
參考: Myself
2006-12-07 4:04 am
全條式乘 cos^2A,將所有cos^2A 代成 1-sin^2A,得出以下:

4sin^4A + 3sin^2A - 1 = 0

之後

(4 sin^2A - 1 ) (sin^2A + 1) = 0

後面個Bracket 是一個 Square 加一是零,不可能。
前面括號:

sinA = 1/2 or -1/2
So A = pi/6, 5pi/6, -pi/6, -5pi/6,之後每個都可以 + 2 pi n


收錄日期: 2021-04-19 21:04:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061206000051KK03533

檢視 Wayback Machine 備份