✔ 最佳答案
相對論是關於時空和引力的基本理論,主要由愛因斯坦創立,分為狹義相對論(特殊相對論)和廣義相對論(一般相對論)。相對論的基本假設是光速不變原理,相對性原理和等效原理。相對論和量子力學是現代物理學的兩大基本支柱。奠定了經典物理學基礎的經典力學,不適用於高速運動的物體和微觀條件下的物體。相對論解決了高速運動問題;量子力學解決了微觀亞原子條件下的問題。相對論極大的改變了人類對宇宙和自然的「常識性」觀念,提出了「同時的相對性」,「四維時空」「彎曲空間」等全新的概念。
目錄 [隱藏]
1 狹義相對論
2 廣義相對論
3 對相對論的批評
4 參見
[編輯] 狹義相對論
主條目:狹義相對論
愛因斯坦在他1905年的論文《論動體的電動力學》中介紹了狹義相對論。狹義相對論考慮的是觀察者在慣性參考系內,也就是以恆定的速度相對於另一個觀察者的參考系。事實上任何一個實驗都不能決定哪一個參考系是絕對的靜止。這也被稱為「相對性理論」。 這個理論對於愛因斯坦的工作並不是全新的,他發現在這個理論(包括電磁在內)需要一個新的形式表達,而這個表達引發了驚人的結果。特別的,這個理論需要光速在真空中對於任何觀察者是不變的,不論觀察者或光源怎樣的運動。
狹義相對論的一個長處是,他的結論可以由以下兩個論點推出:
物理規律在任何的慣性參考系中是相同的。這意味著物理規律對於一個在具有相對性的質子上的觀察者和一根靜止在實驗室里的觀察者是相同的。
光速在真空中是恆定不變的(具體講是299,792,458米每秒)。
[編輯] 廣義相對論
主條目:廣義相對論
廣義相對論是愛因斯坦在1915年發表的理論。愛因斯坦提出「等效原理」,即引力和慣性力是等效的。這一原理建立在引力質量與慣性質量的等價性上(目前實驗證實,在10 − 12的精確度範圍內,仍沒有看到引力質量與慣性質量的差別)。根據等效原理,愛因斯坦把狹義相對性原理推廣為廣義相對性原理,即物理定律的形式在一切參考系都是不變的。物體的運動方程即該參考系中的測地線方程。測地線方程與物體自身故有性質無關,只取決於時空局域幾何性質。而引力正是時空局域幾何性質的表現。物質質量的存在會造成時空的彎曲,在彎曲的時空中,物體仍然順著最短距離進行運動(即沿著測地線運動——在歐氏空間中即是直線運動),如地球在太陽造成的彎曲時空中的測地線運動,實際是繞著太陽轉,造成引力作用效應。正如在彎曲的地球表面上,如果以直線運動,實際是繞著地球表面的大圓走。
[編輯] 對相對論的批評
主條目:倒相對論
相對論的提出,同樣受到很多的指責,有很多人認為它是錯誤的,並大大阻礙了社會的發展。然而這種觀點並不被主流科學界所接受。
The theory of relativity, or simply relativity, refers specifically to two theories: Albert Einstein's special relativity and general relativity.
The term "relativity" was coined by Max Planck in 1908 to emphasize how special relativity (and later, general relativity) uses the principle of relativity.
Contents [hide]
1 Special relativity
2 General relativity
3 References and links
4 External links
[edit] Special relativity
Main article: Special relativity
Albert Einstein's 1905 paper "On the Electrodynamics of Moving Bodies" introduced the special theory of relativity. Special relativity considers that observers in inertial reference frames, which are in uniform motion relative to one another, cannot perform any experiment to determine which one of them is "stationary". This is actually Galileo's principle of relativity; Einstein's contribution was to explicitly include electromagnetism within this principle, which required that the Galilean transformations be replaced by the Lorentz transformations. The resultant theory has many surprising consequences. In particular, it requires that the speed of light in a vacuum be the same for all these observers, regardless of their motion, or the motion of the source of the light, since the invariance of the speed of light is a consequence of Maxwell's equations of electromagnetism.
[edit] General relativity
Main article: General relativity
General relativity was developed by Einstein in the years 1907 - 1915. General relativity replaces the global Lorentz symmetry of special relativity with a local Lorentz symmetry in the presence of matter. The presence of matter "curves" spacetime, and this curvature affects the path of free particles (and even the path of light). General relativity uses the mathematics of differential geometry and tensors in order to describe gravitation as an effect of the geometry of spacetime. This theory is based on the general principle of relativity, which requires all observers to experience the same laws of physics, not just those moving with uniform speed, hence its name.