1條amaths問題 (數學歸納法)

2006-12-06 7:31 am
我會做a 同b
但c就不太會做


a). 利用數學歸納法,證明對於所有正整數n
  1^2 + 2^2 + 3^2 + ...+n^2 = 1/6 x n(n+1)(2n+1)

 
b). 由此,或用其他方法,計算下列各式
  1. 2^2 + 4^2 + 6^2 + ...+ (2n)^2
 answer:2/3 x n(n+1)(2n+1)
  
  2. 1^2 - 2^2 + 3^2 - 4^2 +.. -40^2
 answer:-820


c). 利用a題或用其他方法,推導出計算以下數式的公式
 answer:1/6 x n(n+1)(4n-1)


我要c的步驟啊, thx a lot
更新1:

我打漏了一句= = c). 利用a題或用其他方法,推導出計算以下數式的公式   1X1 + 2X3 + 3X5 +...+n(2n-1)   answer:1/6 x n(n+1)(4n-1)

回答 (1)

2006-12-06 7:35 am
✔ 最佳答案
a) Prove by mathematical induction that 1^(2)+2^(2)+3^(2)+...+n^(2)=1/6.n(n+1)(2n+1)for all positive integers n.

let S(n) be the statement " 1^(2)+2^(2)+3^(2)+...+n^(2)=1/6.n(n+1)(2n+1)for all positive integers n."

when n=1
LHS=1
RHS=1

so, when n=1 the statement is true

Assume when n=k, the statement is true that is
1^(2)+2^(2)+3^(2)+...+k^(2)=1/6*k(k+1)(2k+1) for all positive integers n.

when n=k+1
1^(2)+2^(2)+3^(2)+...+k^(2)+(k+1)^2
=1/6*k(k+1)(2k+1)+(k +1)^2
=1/6(k+1)[k(2k+1)+6k+6]
=1/6(k+1)[2k^2+7k+6]
=1/6(k+1)(k+2)(2k+3)

when n=k+1, the statement is true
By MI for all values of n, S(n) is true

b) Hence,or otherwise,find the values of
i)
2^(2)+4^(2)+6^(2)+...+(2n)^(2)
=(2^2)(1^2)+(2^2)(2^2)+(2^2)(3^2)+...+(2^2)(n^2)
=(2^2)[(1^2)+(2^2)+(3^2)+...+(n^2)]
=4*1/6(n+1)(n+2)(2n+ 3)
=2/3(n)(n+1)(2n+1)

ii)
1^(2)-2^(2)+3^(2)-4^(2)+...-40^(2)

because
(1^2)+(2^2)+(3^2)+...+(40^2)
=1/6(40*41*81)
=22140

(2^2)+(4^2)+(6^2)+...+(40^2)
=2/3(20)(21)(41)
=11480

[(1^2)+(2^2)+(3^2)+...+(40^2)]-[1^(2)-2^(2)+3^(2)-4^(2)+...-40^(2)]
=2[(2^2)+(4^2)+(6^2)+...+(40^2)]
=2*11480
=22960

1^(2)-2^(2)+3^(2)-4^(2)+...-40^(2)
=22140-22960
=-820

c) Using the result obtain in (a),or otherwise,deduce a formula for the expression
1.1+2.3+3.5+...+n(2n1)

1.1+2.3+3.5+...+n(2n1)
=Σi(2i-1) (i from 1 up to n)
=Σ(2i^2-i)
=2Σi^2-Σi
=1/3n(n+1)(2n+1)-1/2n(n+1 )
=1/6n(n+1)[2(2n+1)-3]
=1/6n(n+1)(4n-1)


收錄日期: 2021-04-25 16:51:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20061205000051KK05316

檢視 Wayback Machine 備份